Food Patterns Equivalents Database 2017-2018: Methodology and User Guide

Amended for Use with WWEIA, NHANES 2017-March 2020 Prepandemic

Pages 16-18: Files included in release -refer to:

- FPED for Use with WWEIA, NHANES 2017-March 2020

Prepandemic Documentation, Addendum to 2017-2018 FPED
Methodology and User Guide

- Appendices 5-7 in this document

Pages 80-85: Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020

Pages 86-91: Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020

Pages 92-100: Appendix 7: SAS Program for Calculating Mean Intakes of Food Patterns Equivalents for 37 Components, 2017-March 2020

October 2020
Amended July 2023
U.S. Department of Agriculture Agricultural Research Service Beltsville Human Nutrition Research Center Food Surveys Research Group 10300 Baltimore Avenue Beltsville, Maryland

Suggested citation: Food Patterns Equivalents Database 2017-2018: Methodology and User Guide Amended for Use with WWEIA, NHANES 2017-March 2020 Prepandemic [Online]. Food Surveys Research Group, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland. July 2023. Available at: http://www.ars.usda.gov/nea/bhnrc/fsrg

Acknowledgement of Reviewers We acknowledge the following individuals for reviewing FPED 2017-2018 Methodology and User Guide, associated mean intake tables, and FPED and FPID databases: TusaRebecca Pannucci, Kristin Koegel, and Kevin Kuczynski, Center for Nutrition Policy and Promotion, United States Department of Agriculture. Alexandria, VA.

Disclaimers

The use of trade, firm, or corporation names in this database and documentation is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Glossary of Abbreviations

Abbreviation	Full Name
ARS	Agricultural Research Service
CDC	Centers for Disease Control and Prevention
CNPP	Center for Nutrition Policy and Promotion
Cup eq.	Cup equivalents
DGA	Dietary Guidelines for Americans
ERS	Economic Research Service
FDA	Food and Drug Administration
FDC	Food Data Central
FICRCD	Food Intakes Converted to Retail Commodities Database
FNS	Food and Nutrition Service
FP	Food Patterns
FPE	Food Patterns Equivalents
FPED	Food Patterns Equivalents Database
FPID	Food Patterns Equivalents Ingredients Database
FNDDS	Food and Nutrient Database for Dietary Studies
FSRG	Food Surveys Research Group
HHS	United States Department of Health and Human Services
MPED	MyPyramid Equivalents Database
NCI	National Cancer Institute
NHANES	National Health and Nutrition Examination Survey
Oz. eq.	Ounce equivalents
SR	USDA National Nutrient Database for Standard Reference
Tsp. eq.	Teaspoon equivalents
USDA	United States Department of Agriculture
WWEIA	What We Eat in America

Table of Contents

Chapter 1. Overview. 8
Background 8
Why Develop the Food Patterns Equivalents Database? 8
What is Food Patterns Equivalents Database? 9
What is Food Patterns Equivalents Ingredients Database? 9
Uses of Food Patterns Equivalents Ingredients Database 9
FPED in Dietary Analysis 11
Applications of FPED 12
What is Included in the Methodology and User Guide? 12
Food Patterns Components 12
Food Patterns Components New to FPED 13
Subdivision of Food Patterns Components to Facilitate Data Analysis 13
Foods Not Assigned to Any Food Pattern Components 16
Files Included in the Release 16
Chapter 2. Food Patterns Equivalents Database Methodology 19
What is New in the FPID/FPED 2017-2018? 19
MPED vs. FPED. 19
Guiding Principles 20
Food Patterns Equivalents Ingredients Database and Food Patterns
Equivalents Database 21
Major Development Steps 22
Assignment of FNDDS Foods to Food Patterns Components 22
Disaggregation of FNDDS Foods into Ingredients 23
Assignment of Ingredients to Food Patterns Components. 24
Applying Equivalent Weights and Computing Number of Food Patterns Equivalents 24
Computation of Number of Equivalents in 100 Grams of FNDDS Foods 25
Chapter 3. Fruit Group 26
Fruit Group Components. 26
Determination of Cup Equivalent Weights of Fruits and Fruit Juices 26
Multi-ingredient Foods Containing Fruit 28
Chapter 4. Vegetables Group 30
Vegetables Group Components 30
Determination of Cup Equivalent Weights of Vegetables and Vegetable Juices 31
Naturally Occurring Fats in Olives and Avocado 35
Addition of Fats or Sugars to Vegetables 35
Data Analysis Guidance: White Potatoes and Tomatoes 35
Data Analysis Guidance: Beans, Peas, and lentils 36
Multi-ingredient Foods Containing Vegetables 36
Chapter 5. Grains Group 37
Grains Group Components 37
Determination of Ounce Equivalents of Grains 37
Multi-ingredient Foods Containing Grains 38
Chapter 6. Dairy Group. 39
Dairy Group Components 39
Solid Fats Naturally Present in Dairy Foods 39
Determination of Cup Weights of Dairy Group 39
Other Considerations 40
Multi-ingredient Foods Containing Dairy Components 40
Chapter 7. Protein Foods 41
Protein Foods Components 41
Computation of $n-3$ Fatty Acids Cutoff per 100 Grams of Seafood 42
Computation of Raw Seafood n-3 Cutoff Amount 43
Solid Fats and Oils Naturally Present in Protein Foods 44
Determination of Ounce Equivalents of Lean Meat in Cooked Meat Poultry, and Seafood. 44
Differences between FPID and FPED in the Calculation of Meat, Poultry, and Seafood Ounce Equivalents 47
FPID: Determination of Ounce Equivalents of Lean Meat in Raw Meat, Poultry, and Seafood as an Ingredient. 48
Determination of Ounce Equivalents and Solid Fats Present in Eggs 49
Determination of Ounce Equivalents and Oils Present in Nuts. 49
Multi-ingredient Foods Containing Protein Foods 51
Chapter 8. Added Sugars 52
Determination of Teaspoon Equivalents of Added Sugars 52
Computation of Added Sugars 52
Multi-ingredient Foods Containing Added Sugars. 53
Chapter 9. Oils 54
Margarine 54
Avocado and Olives 54
Fats Naturally Present in Seafood, Nuts and Seeds 54
Determination of Number of Equivalents of Oils 55
Multi-ingredient Foods Containing Oils. 55
Chapter 10. Solid Fats 56
Determination of Number of Equivalents of Solid Fats 56
Solid Fats Naturally Present in Dairy, Meat, Poultry, and Eggs 56
Multi-ingredient Foods Containing Solid Fats 57
Chapter 11. Alcoholic Drinks 58
Determination of Number of Drinks 58
Multi-ingredient Foods Containing Alcohol (Ethanol) 59
References 60
Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPED/FPID 2017-2018 Variable Names in Parenthesis 62
Appendix 2: Connecting MPED 2.0 and FPED 2017-2018 Variables 70
Appendix 3: Food Patterns Equivalents Ingredients Database (FPID) 2017-2018 Variables 72
Appendix 4: Food Patterns Equivalents Database (FPED) 2017-2018 Variables 76
Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 80
Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 86
Appendix 7: SAS Program for Calculating Mean Intakes of Food Patterns Equivalents for the Thirty-Seven Components, 2017-March 2020 92
Appendix 8: Fruit, One Cup Equivalent Weights, FPID/FPED 2017-2018 101
Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018. 105
Appendix 10: Beans, Peas, and Lentils (Legumes), One Cup Equivalent Weights, FPID/FPED 2017-2018 115
Appendix 11: Dairy, One Cup Equivalent Weights, FPID/FPED 2017-2018 117
List of Tables
Table 1: Units of Food Patterns Equivalents Database Components 12
Table 2: Food Patterns Equivalents Database Components 14
Table 3: \quad List of Files and Datasets Included in FPED for use with WWEIA, NHANES 2017-March 2020 Release 17
Table 4: \quad Examples of FNDDS Foods and Their Ingredients 23
Table 5: A Conceptual Model for Food Disaggregation 24
Table 6: Application of Equivalent Weights and Computation of Number of Equivalents Present per 100 Grams of Ingredient or Food 25
Table 7: \quad Number of Equivalents Computation: Sweetened Yogurt with Strawberries 25
Table 8: \quad Fruit Group: Summary of Selected Cup Equivalent Weights 29
Table 9: Vegetables Group: Summary of Selected Cup Equivalent Weights 33
Table 10: Amounts of Grain in One Ounce Equivalent 38
Table 11: Dairy Group: Summary of Selected Cup Equivalent Weights 40
Table 12: FDA Cured Meat and Poultry Categories 42
Table 13: Definitions of One Ounce Equivalent of Protein Foods. 44
Table 14: Amount of Oils Present in One Ounce Equivalent of Selected Nuts. 51

Chapter 1

Overview

Background

The 2015-2020 Dietary Guidelines for Americans (DGA) [1] recommendations have been translated into messages and tips for making healthful food choices [2]. The 2015-2020 DGA form the basis for revisions to the U.S. Department of Agriculture (USDA) Food Patterns (FP) groups. The Food Patterns Equivalents Database (FPED) 2017-2018 has been developed based on the USDA Food Pattern definitions used in the DGA [1]. The Food Patterns provide calorie-based dietary guidance on how much Americans should eat from each of the FP components such as Fruits, Vegetables, Grains, Protein Foods, Dairy, and Oils to have a healthful diet, while simultaneously placing limits on the amounts of added sugars, solid fats, and alcoholic drinks that can be consumed.

The Federal Government, as part of its ongoing nutrition monitoring and surveillance activities conducts the What We Eat in America (WWEIA) survey, which is the dietary intake component of the National Health and Nutrition Examination Survey (NHANES) [3]. The WWEIA, NHANES is a continuous survey and is conducted by the U.S. Department of Agriculture (USDA) and the U.S. Department of Health and Human Services (HHS). The survey uses 24-hour dietary recalls to collect data on the types and amounts of foods and beverages Americans report that they consume. The Food and Nutrient Database for Dietary Studies (FNDDS) 2017-2018 [4] provides nutrient composition for about 7100 foods and beverages in WWEIA, NHANES 2017-2018 [3]. In order to monitor whether Americans meet the FP recommendations of the DGA 2015-2020, the foods in the FNDDS must be converted to the respective amounts of FP equivalents present in them. The FPED includes the amounts of Fruits, Vegetables, Grains, Protein Foods, Dairy, Oils, Added Sugars, Solid Fats, and Alcoholic Drinks present in 100 grams of each of the FNDDS foods.

Why Develop the Food Patterns Equivalents Database?

FNDDS foods composed of single ingredients such as orange juice, baked potato, cooked rice, baked fish, or skim milk that can be directly assigned to Fruit, Vegetables, Grains, Protein Foods, and Dairy components, respectively. However, many of the FNDDS foods such as pizza, sandwiches, fruit salad, chocolate milk shake, fried eggs, and casseroles are multi-ingredient foods consisting of ingredients that are from more than one FP component. Hence, it is necessary to disaggregate multi-ingredient foods to ingredients that can be assigned to an FP component before computing the amount of FP equivalents present in the food. The Food Patterns Equivalents Database serves this purpose by converting foods that are in the forms reported consumed to appropriate Food Patterns equivalents
amounts, thereby providing means to assess the adherence of American diets to the 2015-2020 DGA FP recommendations.

What is Food Patterns Equivalents Database?

Food Patterns Equivalents Database is the current name for the former MyPyramid Equivalents Database (MPED) [5] developed by USDA, Agricultural Research Service (ARS), Food Surveys Research Group (FSRG). The FPED converts FNDDS foods to the respective number of cup equivalents of Fruit, Vegetables, and Dairy; ounce equivalents of Grains and Protein Foods; number of Alcoholic Drinks; teaspoon equivalents of Added Sugars; and gram equivalents of Solid Fats and Oils. Foods in FNDDS 2017-2018 are disaggregated to ingredients that can be directly assigned to one of the FP components. Additionally, protein foods are further disaggregated to lean fraction and fat as follows: meat and poultry are disaggregated to lean meat and solid fat fractions; and seafood and nuts to lean protein and oil fractions. Similarly, dairy foods are further disaggregated to low fat dairy fraction, similar to skim milk, and solid fat fraction.

In addition, the FPED release includes a Food Patterns Equivalents Ingredients Database (FPID) that is similar to FPED for the unique ingredients of FNDDS foods. A few applications of FPID are described in this section.

What is Food Patterns Equivalents Ingredients Database?

The FNDDSIngred file includes data on the ingredients and the amounts present in each of the FNDDS foods (includes beverages). Majority of the foods in FNDDS 2017-2018 are multi-ingredient foods and are composed of various combinations of 2300+ unique foods in the USDA's FoodData Central (FDC) and National Nutrient Database for Standard Reference (SR) 28. A separate database named Food Patterns Equivalents Ingredients Database (FPID) has been developed for these unique ingredients. The FP equivalent amounts of FPID ingredients are then applied to foods in the FNDDSIngred file to create FPED. Details on FPID and FPED development are described in the later sections.

The methodology for the development of FPED and FPID are essentially the same. The FPED includes the amounts of the 37 FP components per 100 grams of each of the FNDDS foods, and FPID includes the amounts of the 37 FP components per 100 grams of each of the unique ingredients of FNDDS foods.

Uses of Food Patterns Equivalents Ingredients Database

The FPID has the potential for research, economic, and policy applications. A few of the major applications of FPID are listed below.

- Because FPID is ingredient-based, it can be used to estimate the amounts of FP components present in foods in general, where recipes are available. FPID serves as a tool to estimate the amounts of FP components consumed
by participants of dietary studies. Additionally, because FPID is used to create FPED for foods reported in the national dietary surveys, the dietary status of the study populations is comparable to that of the national population.
- FPID in combination with ARS Food Intakes Converted to Retail Commodities Databases (FICRCDs) [6] can be used to estimate the amounts of raw, frozen, or canned fruits and vegetables commodities to be purchased to meet the DGA FP recommendations. To estimate the amounts of raw fruits and vegetables to be purchased, it is necessary to convert fruits and vegetables from their consumed forms to purchased forms, which include peel, seeds, and other refuse. FICRCDs include conversion factors that convert fruits and vegetable from consumed forms to purchased forms. FICRCDs also include conversion factors to convert cooked grains, legumes, meat, poultry, and fish to their respective uncooked or raw forms.
Appendices 8-11 of this document [FPED 2017-2018 Methodology and User Guide] include the weights of 1 cup equivalents for many fruits, vegetables, and dairy foods that are ingredients of FNDDS 2017-2018 foods.
- The FPID can serve as a resource for estimating the cost of meeting DGA recommendations for fruits and vegetables and other food commodities. By pricing the commodities, the cost (price) of nutritious food choices can be estimated.

The following two examples illustrate the use of FPID cup equivalent weights and FICRCD conversion factors in combination to estimate: (1) the amount of raw broccoli and cantaloupe commodities to be purchased to obtain one cup equivalent of each; (2) the cost (price) of one cup equivalent of raw broccoli and cantaloupe; and (3) the number of cup equivalents of raw broccoli and cantaloupe present in one pound of respective commodities (1 pound $=454$ grams).

Raw Broccoli:

$\begin{array}{ll}1 \text { cup equivalent of broccoli (from FPID) } & =80 \mathrm{~g} \\ \end{array}$
Conversion factor for raw broccoli (from FICRCD) $\quad=1.64$
i.e., 164 grams of raw broccoli commodity purchased will yield 100 grams of raw, edible portion.
(1) 1 cup equivalent of broccoli, edible portion

$$
=80 \times 1.64=131 \mathrm{~g} \text { of raw broccoli commodity }
$$

131 grams raw broccoli commodity $=131 / 454=0.29 \mathrm{lb}$.
Or, 0.29 lb . of raw broccoli commodity will yield 1 cup equivalent of raw broccoli (edible portion).
(2) Price of 1 lb . raw broccoli commodity
= \$1.70

Price of 0.29 lb . raw broccoli commodity $\quad=\$(1.70 \times 0.29)$

$$
=\$ 0.49
$$

Price of 1 cup equivalent of raw broccoli is $\$ 0.49$.
(3) 1 lb . raw broccoli commodity

$$
\begin{aligned}
& =[(454 / 80) / 1.64] \text { cup eq. } \\
& =3.46=3.5 \text { cup eq. }
\end{aligned}
$$

i.e., 1 pound of raw broccoli commodity will yield 3.5 cup equivalents of raw broccoli (edible portion).

Cantaloupe:

1 cup equivalent of cantaloupe (from FPID) $\quad=170 \mathrm{~g}$
Conversion factor for cantaloupe (from FICRCD) $\quad=1.96$
i.e., 196 grams of raw cantaloupe commodity purchased will yield 100 grams of raw, edible portion.
(1) 1 cup equivalent of cantaloupe, edible portion

$$
=1.96 \times 170=333 \mathrm{~g} \text { of raw cantaloupe commodity }
$$

333 grams of raw cantaloupe commodity $=333 / 454=0.73 \mathrm{lb}$.
Or, 0.73 lb . of raw cantaloupe commodity will yield 1 cup equivalent of cantaloupe (edible portion).

$$
\begin{aligned}
& \text { (2) Price of } 1 \mathrm{lb} \text {. raw cantaloupe commodity } \\
& =\$ 1.00 \\
& \text { Price of } 0.73 \mathrm{lb} \text {. raw cantaloupe commodity } \\
& =\$(1.00 \times 0.73) \\
& =\$ 0.73
\end{aligned}
$$

Price of 1 cup equivalent of raw cantaloupe is $\$ 0.73$.
(3) 1 lb . raw cantaloupe commodity $=[(454 / 170) / 1.96]$ cup eq. $=1.36=1.4$ cup eq.
i.e., 1 pound of raw cantaloupe commodity will yield 1.4 cup equivalents of cantaloupe (edible portion).

Similar computations can be made for frozen and canned fruits and vegetables by applying appropriate conversion factors from FICRCD. Canned fruits and vegetables are assumed to contain 65% of gross weight as fruit and vegetables, respectively [6].

FPED in Dietary Analysis

Many multi-ingredient foods such as pizza, soups, sandwiches, and salads are commonly consumed. The energy and nutrients obtained from these foods can be estimated without having to disaggregate these foods to their ingredients. Nutrient adequacy estimations can be done without requiring food disaggregation. However, if data analysis requires an assessment of diets with respect to the DGA recommendations, disaggregation of foods to appropriate FP components can be attained by applying FPED amounts.

Applications of FPED

The FPED has many important applications in Federal nutrition policies and in education programs. It can be used to estimate the mean intakes of FP components and to evaluate whether Americans eat according to the DGA recommendations by linking FPED with the appropriate WWEIA, NHANES dietary intake data. The FPED data release includes the WWEIA, NHANES day 1 and day 2 dietary data converted to FP components. The FPED data files are also used as a dietary assessment tool such as the Healthy Eating Index [7], and USDA Food Plans including the Thrifty Food Plan [8], to name a few. Federal agencies use the data to conduct epidemiological studies, surveillance, risk analysis, policy analysis and to develop dietary intervention programs. These agencies include USDA Economic Research Service (ERS), Center for Nutrition Policy and Promotion (CNPP), Food and Nutrition Service (FNS), U.S. Department of Health and Human Services (HHS) [9], National Cancer Institute (NCI) [10], and the Centers for Disease Control and Prevention (CDC).

FPED can be used in dietary research, where the foods in the study can be directly linked to FNDDS food codes.

What is Included in the Methodology and User Guide?

It describes the methodology including guiding principles and other decisions made in the development of FPID and FPED FP components, determination of FP equivalents for each component, and algorithms used in the computation of FP equivalents. It also includes descriptions of the data files and databases in FPED 2017-2018 release.

Food Patterns Components

Table 1 includes the main FP components in FPED and their units of measurement.
Table 1. Units of Food Patterns Equivalents Database Components

Food Patterns Equivalents Database Main Components	Units of Measurement
Fruits	Cup equivalents (cup eq.)
Vegetables	Cup equivalents
Grains	Ounce equivalents (oz. eq.)
Dairy	Cup equivalents
Protein Foods	Ounce equivalents
Added Sugars	Teaspoon equivalents (tsp. eq.)
Oils	Gram equivalents
Solid Fats	Gram equivalents
Alcoholic Drinks	Number of drinks

Food Patterns Components New to FPED

FPED includes new components that are not in MPED

- Fruit juices have been separated into a separate Fruit Juice component.
- The Red and Orange Vegetables component includes tomatoes and other red and orange colored vegetables.

Additionally, names of some of the components common to FPED and MPED have changed so as to be consistent with DGA 2010 and DGA 2015-2020. Meat, poultry, fish, eggs, nuts, seeds, and soy products are included in the Protein Foods components. The Fish component in MPED is named Seafood in FPED. The Cured Meat component includes frankfurters, sausages, and luncheon meats that are made from beef, pork, or poultry and replaces M_Frank component of MPED.

Subdivision of Food Patterns Components to Facilitate Data Analysis

In FPED, many of the Food Patterns main components are further subdivided so as to facilitate in-depth data analysis. The Red and Orange Vegetable component is subdivided into Tomatoes and Other Red and Orange Vegetables; the Starchy Vegetable component is subdivided into Potatoes (white potatoes) and Other Starchy Vegetables; the Meat, Poultry, and Seafood component is subdivided into Meat, Poultry, Organ Meat, Cured Meat, Seafood high in $n-3$ fatty acids, and Seafood low in $n-3$ fatty acids.

Because beans, peas, and lentils (legumes) can be considered as Vegetables as well as Protein Foods, the Beans, Peas, and Lentils component is computed both ways, thereby providing flexibility to users to place Beans, Peas, and Lentils in either of the two components, but not in both simultaneously to avoid double counting. Frankfurters, sausages, cured ham, corned beef, and luncheon meat that are made from beef, pork, or poultry are placed in the Cured Meat component because of the way they are processed. Organ meat is a separate component in FPED.

Table 2 lists the 37 FP components and includes a brief description of foods included in the components.

Table 2. Food Patterns Equivalents Database Components

FPED component and SAS variable name	Foods and Units
Total Fruit (F_TOTAL)	Total intact fruits (whole or cut) and fruit juices (cup eq.)
Citrus, Melons, and Berries (F_CITMLB)	Intact fruits (whole or cut) of citrus, melons, and berries (cup eq.)
Other Fruits (F_OTHER)	Intact fruits (whole or cut); excluding citrus, melons, and berries (cup eq.)
Fruit Juice (F_JUICE)*	Fruit juices, citrus and non-citrus (cup eq.)
Total Vegetables (V_TOTAL)	Total dark green, red and orange, starchy, and other vegetables; excludes legumes (cup eq.)
Dark Green Vegetables (V DRKGR)	Dark green vegetables (cup eq.)
Total Red and Orange Vegetables (V_REDOR_TOTAL)*	Total red and orange vegetables (tomatoes and tomato products + other red and orange vegetables) (cup eq.)
Tomatoes (V_REDOR_TOMATO)	Tomatoes and tomato products (cup eq.)
Other Red and Orange Vegetables (V_REDOR_OTHER)	Other red and orange vegetables, excluding tomatoes and tomato products (cup eq.)
Total Starchy Vegetables (V_STARCHY_TOTAL)*	Total starchy vegetables (white potatoes + other starchy vegetables) (cup eq.)
Potatoes (V_STARCHY_POTATO)	White potatoes (cup eq.)
Other Starchy Vegetables (V STARCHY OTHER)	Other starchy vegetables, excluding white potatoes (cup eq.)
Other Vegetables (V_OTHER)	Other vegetables not in the vegetable components listed above (cup eq.)
Beans, Peas, and Lentils (V_LEGUMES)	Beans, peas, and lentils (legumes) computed as vegetables (cup eq.)
Total Grains (G_TOTAL)	Total whole and refined grains (oz. eq.)
Whole Grains (G_WHOLE)	Grains defined as whole grains and contain the entire grain kernel - the bran, germ, and endosperm (oz. eq.)
Refined Grains (G_REFINED)	Refined grains that do not contain all of the components of the entire grain kernel (oz. eq.)
Total Protein Foods (PF_TOTAL)*	Total meat, poultry, organ meat, cured meat, seafood, eggs, soy, and nuts and seeds; excludes legumes (oz. eq.)
Total Meat, Poultry, and Seafood (PF_MPS_TOTAL)	Total of meat, poultry, seafood, organ meat, and cured meat (oz. eq.)

[^0]Table 2. Food Patterns Equivalents Database Components (Continued)

FPED component and SAS variable name	Foods and Units
Meat (PF_MEAT)	Beef, veal, pork, lamb, and game meat; excludes organ meat and cured meat (oz. eq.)
Cured Meat (PF_CUREDMEAT)	Frankfurters, sausages, corned beef, cured ham and luncheon meat that are made from beef, pork, or poultry (oz. eq.)
Organ Meat (PF_ORGAN)	Organ meat from beef, veal, pork, lamb, game, and poultry (oz. eq.)
Poultry (PF_POULT)	Chicken, turkey, Cornish hens, duck, goose, quail, and pheasant (game birds); excludes organ meat and cured meat (oz. eq.)
Seafood High in n-3 Fatty Acids (PF_SEAFD_HI)	Seafood (finfish, shellfish, and other seafood) high in $n-3$ fatty acids (oz. eq.)
Seafood Low in $n-3$ Fatty Acids (PF_SEAFD_LOW)	Seafood (finfish, shellfish, and other seafood) low in $n-3$ fatty acids (oz. eq.)
Eggs (PF_EGGS)	Eggs (chicken, duck, goose, quail) and egg substitutes (oz. eq.)
Soy Products (PF_SOY)	Soy products, excluding calcium fortified soy milk (soymilk) and products made with raw (green) soybean (oz. eq.)
Nuts and Seeds (PF_NUTSDS)	Peanuts, tree nuts, and seeds; excludes coconut (oz. eq.)
Beans, Peas, and Lentils (PF_LEGUMES)*	Beans, peas, and lentils (legumes) computed as protein foods (oz. eq.)
Total Dairy (D_TOTAL)	Total milk, yogurt, cheese, and whey. For some foods, the total dairy values could be higher than the sum of D_MILK, D_YOGURT, and D_CHEESE because the Miscellaneous Dairy component composed of whey is not included in FPED as a separate variable. (cup eq.)
Milk (D_MILK)	Fluid milk, buttermilk, evaporated milk, dry milk, and calcium fortified soy milk (soymilk) (cup eq.)
Yogurt (D_YOGURT)	Yogurt (cup eq.)
Cheese (D_CHEESE)	Fats naturally present in nuts, seeds, and seafood; all hydrogenated vegetable oils, except palm oil, palm kernel oil, and coconut oils; the fat present in avocado and olives above the allowable amount; 50% of the fat present in stick and tub margarines and margarine spreads (grams)
Oils (OILs)	Cheeses (cup eq.)

[^1]Table 2. Food Patterns Equivalents Database Components (Continued)

FPED component and SAS variable name	Foods and Units
Solid Fats (sOLID_FATS)	Fats naturally present in meat, poultry, eggs, and dairy (lard, tallow, and butter); fully or partially hydrogenated oils; shortening; palm oil; palm kernel oil; coconut oils; fats naturally present in coconut meat and cocoa butter; and 50% of the fat present in stick and tub margarines and margarine spreads (grams)
Added Sugars (ADD_SUGARS)	Caloric sweeteners such as syrups and sugars and others defined as added sugars (tsp. eq.)
Alcoholic Drinks (A_DRINKS)	Alcoholic beverages and alcohol (ethanol) added to foods after cooking (no. of drinks)

* New variable in FPED and is not in MPED 2

Appendix 1 contains a detailed list of foods included in each of the 37 Food Patterns components in FPED. Appendix 2 lists the variables in MPED 2 and FPED, showing the connections between the variables in the two databases.

Foods Not Assigned to Any Food Patterns Components

A few of the FNDDS 2017-2018 foods are considered as non-FP components because they contain a substantial proportion of ingredients that are not conventional FP components. These non-FP foods include infant formula and a few of the milk- or soy-based beverages that are meal supplements or protein supplements containing extensively processed ingredients such as hydrolyzed whey and soy products which are not FP foods. Other foods that are considered as non-FP components include broth, coconut water, cornstarch, black coffee without added sugars, human milk, leavening agents, lecithin, mustard, orange peel, salt, low-calorie or nonnutritive sweeteners, sugarless gums, soy sauce, tea without additions, vinegar, water, yeast extract, and spices such as celery seeds, cinnamon, cloves, cumin, curry powder, nutmeg, black and white pepper, poppy seeds, and powdered spices.

Files Included in the Release (see FPED for use with WWEIA, NHANES 2017-March 2020 Prepandemic Documentation, and Appendices 5-7 (pages 80-100) in this document)

The release includes:

- Methodology and User Guide
- The amount of each of the 37 FP components present per 100 grams of each of the FNDDS 2017-2018 foods (FPED) and their unique ingredients (FPID) in Microseft Access, Mieroseft Excel, and SAS
- The amount of each of the 37 FP components present in individual foods reported by each respendent on day 1 and day 2 of the survey and respondents' demographic information in SAS
- Total amount of each of the 37 FP components reported by each respondent en day 1 and day 2 of the survey and respondents' demographic information in SAS
- Four table sets containing estimates of mean intakes of the 37 FP components on day 1, by demographic groups
- SAS codes file to create mean intake estimates of FP components on day 1, by demographic groups.

The names of the files including the MS Access and SAS datasets that are released in FPED $2017-2018$ are listed in Table 3.

Table 3. List of Files and Datasets Included in FPED 2017-2018 Release

Name of the file	Information contained in the file
fped_1718.pdf	Food Patterns Equivalents Database 2017-2018: Methodolegy and UserGuide with appendices on the foods included in each of the 37 FP components and cup weights for fruits, vegetables, and dairy
fpid_1718.mdb	Includes amounts of the 37 FP components present per 100 grams of the 2322 FNDDS 2017 2018 ingredients, in Microseft Access
fpid_1718..xlsx	Includes amounts of the 37 FP components present per 100 grams of the 2322 FNDDS 2017 2018 ingredients, in Mierosoft Excel
fpid_1718.sas7bdat	Includes amounts of the 37 FP components present per 100 grams of the 2322 FNDDS 2017 2018 ingredients, in SAS
fped_1718.mdb	Includes amounts of the 37 FP components present per 100 grams of the 7083 FNDDS 2017 2018 foods, in Mierosoft Access
fped_1718.xls*	Includes amounts of the 37 FP components present per 100 grams of the 7083 FNDDS 2017 2018 foods, in Mierosoft Excel
fped_1718.sas7bdat	Includes amounts of the 37 FP components present per 100 grams of the 7083 FNDDS $2017-2018$ foods, in SAS
fped_dr1iff_1718.sas7bdat	Includes amount of each of the 37 FP components present in each of the foods reported by the respondents on day 1 and demographic variables. Total number of ebservations in the file $=112683$. See Appendix 5 for the list of variables.

Table 3. List of Files and Datasets Included in FPED 2017-2018 Release (Continued)

Name of the file	Information contained in the file
fped_dr2iff_1718.sas7bdat	Includes each of the 37 FP components present in each of the foods reported by the respondents en day 2 and demographic variables. Total number of observations in the file $=93500$. See Appendix 5 for the list of variables
fped_dr1tot_1718.sas7bdat	Includes total amount of each of the 37 FP components from foods reported by each respendent on day 1 and demegraphic variables. Total number of observations in the file $=8704$. See Appendix 6 for the list of variables.
fped_dr2tot_1718.sas7bdat	Includes total amount of each of the 37 FP components from foods reported by respondents on day 2 and demographic variables. Total number of observations in the file $=8704$. See Appendix 6 for the list of variables.
Table_1_FPED_GEN_1718.pdf	Mean intakes of FP components by age-gender groups; day 1 dietary intake
Table_2_FPED_RAC_1718.pdf	Mean intakes of FP components by raceethnicity groups; day 1 dietary intake
Table_3_FPED_INC_1718.pdf	Mean intakes of FP compenents by household income groups (in dollars); day 1 dietary intake
Table_4_FPED_POV_1718.pdf	Mean intakes of FP components by household income groups (as percent of poverty); day 1 dietary intake
MakeTables_1718_sas.sas	SAS codes file that produces mean intakes tables 1-4 (Appendix 7). While executing MakeTables.sas, day 1 total file, fped_dr1tot_1718.sas7bdatshould be in the same folder as MakeTables.sas file.

Chapter 2

Food Patterns Equivalents Database Methodology

What is New in the FPID/FPED 2017-2018?

The guiding principles and methodology used in the development of FPID/FPED 2017-2018 is the same as that used in previous FPID/FPEDs since 2005-2006, except from 2011-2012 onward undiluted fruit juice concentrated in foods were assigned to added sugars. However, this change did not impact mean intakes of added sugars or fruit juice by demographic groups.

The current release includes a Microsoft Excel file that contains the amount of each of the 37 FP components present per 100 grams of each of the FNDDS 2017-2018 foods (FPED) and their unique ingredients (FPID). The previous releases had these per 100-gram databases in SAS and Microsoft Access only.

MPED vs. FPED

The methodology used to develop the MPED has been revised in order to:

- Simplify FPED development
- Apply consistent decisions across similar foods

Major differences between FPED and MPED methodology are:

- Consolidation of the weights of one cup equivalent of fruits such that similar types of fruits will have the same cup weights, with a few exceptions.
- Fruit juices form a separate fruit juice component and are not included along with intact or whole fruit.
- Consolidation of the weights of one cup equivalent of vegetables such that similar types of vegetables will have the same cup weights, with a few exceptions.
- Definition of ounce equivalents of grains: For grain products such as breads, pancakes, waffles, muffins, and grain-based snacks made of flour, 16 grams of flour is used as the basis for defining one ounce equivalent of grains. Cooked grains such as cooked rice, pasta, and hot breakfast cereals are converted to uncooked form, and one ounce equivalent of grains is defined as 28.35 grams. No change has been made from the MPED definition of one ounce equivalent of grains $(28.35 \mathrm{~g})$ for ready-to-eat cereals.
- Inclusion of calcium fortified soymilk (calcium fortified soy beverage) in the Dairy Group, as defined in the DGA 2010 and DGA 2015-2020.
- Computation of added sugars equivalents using the sugar content of foods that are defined as added sugars.
- Computation of the number of alcoholic drinks directly from the alcohol (ethanol) content of the beverages. One drink is defined as the amount of alcoholic beverage containing 0.6 fluid ounces or 14 grams of alcohol.
- Yogurt present in frozen yogurt is assigned to the Yogurt component. In MPED, frozen yogurt was assigned to the Milk component.
- Fat free cream cheese is assigned to the Cheese component. In MPED, it was assigned to solid fat.
- The fats present in stick, tub, and spread type of margarines are divided into equal amounts of oils and solid fats. This is a major change from MPED, where stick margarines were assigned to solid fats and tub and spread types containing less than 80 percent fat were assigned to oils.

Guiding Principles

The following guiding principles were used when assigning foods to respective Food Patterns (FP) components:

- Assigning foods to appropriate FP components independent of the amounts in which they are present: All ingredients are assigned to an FP component, even if they are present in small amounts in the food. Milk present in coffee, tea, batters, cookies, and cakes; lemon juice used in mayonnaise, cake icing, baked or broiled fish; lime juice present in alcoholic beverages; cheese and oils present as ingredients of sauces; nuts used as garnishes; fruits and nuts present as ingredients in candies, breads, muffins and ready-to-eat cereals are some of the examples where an FP component can be present in small amounts in a food and required consideration in FPED.
- Rounding to two decimals places: The amounts of FP components present per 100 grams of each food in FPED were rounded to two decimal places. Any food ingredient that is present in very minuscule amounts will have a value of zero when rounded.
- Rounding the weights of fruits and vegetables cup equivalents to the nearest zero or five grams: Weights of one cup equivalent of fruits and vegetables, including cooked beans, peas, and lentils (legumes), were rounded to the nearest zero or five grams. The reason being because of measurement error we do not have the precision to estimate the cup weight rounded to the nearest gram. For example, a cup weight of 126 grams is rounded to 125 grams (nearest five grams), implying it is between 122.50 to 127.49 grams. However, it should be noted that even these rounded values have measurement errors associated with them. The cup weights of dried fruits and vegetables, potato chips, and vegetable chips are small compared with raw or cooked vegetables and hence were not rounded to the nearest zero or five grams to minimize cup weight errors.
- Consolidating cup equivalents for similar fruits and vegetables: The weights of one cup equivalents of fruits and vegetables were consolidated
such that similar types of fruits or vegetables will have the same cup weights, with a few exceptions. For example, all types of berries such as raw blackberries, blueberries, cranberries, mulberries, raspberries, and strawberries were assigned 145 grams as the weight of one cup equivalent. Likewise, all types of raw peppers such as banana, hot chili, poblano, serrano, and bell were assigned a weight of 120 grams per one cup equivalent. Cooked beans, peas, and lentils (legumes) such as cooked black beans, fava beans, lentils, lima beans, mung beans, pinto beans, chickpeas, cowpeas, and white beans were assigned a weight of 175 grams per cup equivalent. Details on additional decisions made on fruit and vegetables groups are described under Fruit Group and Vegetables Group chapters.
- Applying 16-gram flour rule: The grains were categorized into either whole grains or refined grains (non-whole grains) based on whether they contained the entire grain kernel or only certain components of the kernel. In the MPED, the weights of specific sizes of foods such as the weights of one slice of white bread (26 g), half of a hamburger roll (21.5 g), half of an English muffin (25 to 29 g), and small pancakes (40 g) were used as the basis for determining what counts as one ounce equivalent of grains. However, in FPED, the weight of the food that contained 16 grams of flour was used as the basis for defining an ounce equivalent of grains for grain products made of flour. This principle was applied to grain-based foods such as breads, cakes, cookies, corn chips, crackers, muffins, pie crust, pastries, pretzels, quick breads, and all types of rolls (hard, hamburger, hot dog, soft, sweet). The revised methodology offers a standardized way to compute grain equivalents. Cooked grains such as cooked rice, pasta, macaroni, and hot breakfast cereals were first converted to respective amounts of uncooked grains or cereals with an ounce equivalent of grains defined as 28.35 grams. No changes were made to the MPED definition of one ounce equivalent of grains for ready-to-eat cereals, which was 28.35 grams. Details on additional decisions made on grains are described in the Grain Group chapter.
- Soy milk: Calcium fortified soy milk (calcium fortified soy beverages) was included in the Dairy Group, and soy milk/beverage that did not contain added calcium was placed in the Soy Product Group.

Food Patterns Equivalents Ingredients Database and Food Patterns Equivalents Database

The 7083 foods in the FNDDS 2017-2018 were composed of various combinations of 2322 unique ingredients. A Food Patterns Equivalents Ingredients Database (FPID) was developed first for these unique ingredients. The methodology for the development of FPID and FPED were the same, and they each have 37 FP components per 100 grams of ingredient or food. The FPID was applied to foods in the FNDDSIngred file and the FPED was developed.

Major Development Steps

There are four major steps involved in computing Food Patterns equivalents for each FNDDS 2017-2018 food:

1. Disaggregation of FNDDS 2017-2018 foods to its ingredients.
2. Assignment of appropriate Food Patterns (FP) components to ingredients.
3. Computation of FP equivalents per 100 grams of ingredient by applying equivalent weights (FPID).
4. Determination of the amounts of each of the 37 FP equivalents present per 100 grams of FNDDS 2017-2018 foods, by applying FPID values.

Figure 1 illustrates the major steps in the development of FPID and FPED.
Figure 1. Overview of the Process

${ }^{1}$ FNDDS = Food and Nutrient Database for Dietary Studies
${ }^{2} \mathrm{FP}=$ Food Patterns
${ }^{3}$ FPE $=$ Food Patterns Equivalents
${ }^{4}$ FPID $=$ Food Patterns Equivalents Ingredients Database
${ }^{5}$ FPED $=$ Food Patterns Equivalents Database

Assignment of FNDDS Foods to Food Patterns Components

Some of the FNDDS foods form their own ingredient, and others have more than one ingredient, as shown below. In Table 4, milk, apple, and carrots form their own ingredient; and fried eggs, cheese sandwich, and custard have three, two, and five ingredients, respectively.

Table 4. Examples of FNDDS Foods and Their Ingredients

FNDDS food code	Description	Ingredient code	Ingredient description
11111000	Milk, cow's, fluid, whole	01077	Milk, whole, 3.25\% milk fat, with added vitamin D
63101000	Apple, raw	09003	Apples, raw
73101010	Carrots, raw	11124	Carrots, raw
31105030	Eggs, whole, fried with oil	01123	Eggs, whole, raw, fresh
		02047	Salt, table
	82101000	Vegetable oil, NFS	
14640000	Cheese sandwich	01252	Cheese product, pasteurized process, American
	Custard	18069	Bread, white, commercially prepared
		11100000	Milk, NFS
		19335	Sugars, granulated
		01123	Egg, whole, raw, fresh
		14429	Beverages, water, tap, municipal
		02047	Salt, table

FNDDS foods that can be directly assigned to an FP component are assigned to the appropriate component. Fruits, vegetables, fluid milk, cheese, cooked rice and pasta, broiled meat and fish, butter, cooking oils, and plain peanuts and tree nuts are examples of foods that can be directly assigned to an FP component, without requiring disaggregation into ingredients. Using Table 5 examples, milk, apples, and carrots can be assigned directly to the appropriate FP components. If an FNDDS food can be directly assigned to an FP component, then the number of FP equivalents were computed using appropriate cup, ounce, or gram weights.

Disaggregation of FNDDS Foods into Ingredients

Foods that cannot be directly assigned to an FP component are disaggregated into its ingredients. Most of the FNDDS foods are multi-ingredient foods and cannot be directly assigned to an FP component, without prior disaggregation into their ingredients (e.g., fried vegetable, fried eggs, pizza, sandwiches, soups, cakes, cookies, candies, ready-to-eat cereals, rice with vegetables and meat, frozen dinners). In Table 4 examples, fried eggs, cheese sandwich, and custard cannot be directly assigned to an FP component and need disaggregation into ingredients that can be assigned to an FP component. Table 5 provides a conceptual model for the level of food disaggregation used in FPID and FPED.

Table 5. A Conceptual Model for Food Disaggregation

Survey food description	Recipe for the previous level ${ }^{\text {a }}$		
	Level 1 disaggregation	Level 2 disaggregation	Level 3 disaggregation
Tuna noodle casserole with cream or white sauce, with butter ${ }^{\text {a }}$	1. Light tuna fish, canned in oil, drained	i. Tuna fish ${ }^{\text {b }}$ ii. Vegetable oil ${ }^{\text {b }}$ iii. Salt c	
	2. Egg noodles, cooked	i. Egg noodles, dry	i. Whole eggs, raw ${ }^{\text {b }}$ ii. Wheat flour ${ }^{b}$
	3. Fluid milk ${ }^{\text {b }}$		
	4. Butter ${ }^{\text {b }}$		
	5. Wheat flour, white, all-purpose, enriched, bleached ${ }^{\text {b }}$		
Tequila Sunrise ${ }^{\text {a }}$	1. Tequila ${ }^{\text {b }}$		
	2. Orange juice ${ }^{\text {b }}$		
	3. Lime juice ${ }^{\text {b }}$		
	4. Grenadine	i. High fructose corn syrup ${ }^{\text {b }}$ ii. Water ${ }^{c}$	
Baked fish, made with butter ${ }^{\text {a }}$	1. Fish ${ }^{\text {b }}$		
	2. Butter ${ }^{\text {b }}$		
	3. Lemon juice ${ }^{\text {b }}$		

${ }^{\text {a }}$ Only the major ingredients are listed
${ }^{\mathrm{b}}$ Indicates the level at which assignments are made
${ }^{\text {c }}$ Ingredient is defined as a non-FP component

Assignment of Ingredients to Food Patterns Components

After disaggregation, each ingredient is either assigned to an appropriate FP component listed in Table 2 or to the "non-FP component" category.

Applying Equivalent Weights and Computing Number of Food Patterns Equivalents

The FP equivalents are computed per 100 grams of ingredients or foods that have an FP component assignment. Table 6 gives examples of FP equivalents computations per 100 grams of ingredient or foods.

Table 6. Application of Equivalent Weights and Computation of Number of Equivalents Present per 100 Grams of Ingredient or Food

Food	Weight of one cup equivalent (g)	Number of equivalents per 100 grams of food
Fluid milk	245	$100 / 245=0.41$
Carrots, raw	125	$100 / 125=0.80$
Berries, raw	145	$100 / 145=0.69$
100% fruit juices	250	$100 / 250=0.40$

Computation of Number of Equivalents in 100 Grams of FNDDS Foods

The amounts of FP equivalents present in each of the ingredients of an FNDDS food are totaled to get the 37 FP component profile per 100 grams of food. FNDDS foods that have only non-FP components will have zero values for all of the FP components in FPED. There are no missing values in FPID and FPED.

The following table (Table 7) provides an overview of computing number of equivalents for 100 grams of sweetened yogurt with strawberries.

Table 7. Number of Equivalents Computation: Sweetened Yogurt with Strawberries

Ingredients $^{\mathbf{1}}$	Amount present per 100 grams of food (g)	Weight of one cup or tsp. equivalent (g)	Food Patterns component assignment	Number of equivalents per 100 grams of food
Yogurt, non- fat	82	245	Yogurt	0.34 cup
Strawberries, frozen	6	150	Citrus, Melons, and Berries	0.04 cup
Sugar	12	4.2	Added Sugar	2.86 tsp.

${ }^{1}$ Only the major FP ingredients are listed.
In FPED, 100 grams of sweetened yogurt will have 0.34 cup Yogurt and Total Dairy; 0.04 cup Citrus, Melons, and Berries, and Total Fruit; and 2.86 teaspoons of Added Sugars; and the rest of the FP components will have zero values.

Chapter 3

Fruit Group

This chapter discusses the Fruit Group components and the determination of the amount of Food Patterns equivalents for its components, with examples.

Fruit Group Components

The Fruit Group consists of three components: Citrus, Melons, and Berries; Other Fruits; and Fruit Juice. The first two components include fruits that are consumed as intact fruit or as fruit pieces and exclude fruit juices. The Fruit Juice component includes both citrus and non-citrus fruit juices.

The Citrus, Melons, and Berries component includes blackberries, blueberries, cranberries, currents, dewberries, huckleberries, kiwifruit, loganberries, mulberries, raspberries, and strawberries; melons such as cantaloupe, casaba, honeydew, and watermelon; and citrus fruit such as calamondin, grapefruit, kumquats, lemons, limes, mandarin oranges, oranges, tangerines, and tangelos. The Other Fruits component includes apples, apricots, bananas, cherries, dates, figs, grapes, guava, litchis, mangoes, nectarines, papaya, passion fruit, peaches, pears, pineapple, plums, pomegranates, prunes, raisins, rhubarb, and tamarind. The Fruit Juice component includes juice of citrus, melons, berries and other fruits.

Appendix 1 lists foods in the Fruit Group.

Determination of Cup Equivalent Weights of Fruits and Fruit Juices

One cup of raw, canned, or frozen fruit or one cup of 100% fruit juice is defined as one cup equivalent of fruit. The weights of one cup equivalent of fruits are consolidated such that similar types of fruits will have the same cup weights, with a few exceptions. The cup weights are rounded to the nearest zero or five grams. The FPED 2017-2018 uses the same cup weights as those used in the previous FPEDs.

Berries: One cup weights of raw (or fresh) berries such as blackberries, blueberries, dewberries, huckleberries, loganberries, mulberries, and strawberries are between 140 and 145 grams, with most of them weighing 145 grams. Therefore, raw/fresh berries are assigned 145 grams per cup. Frozen berries have a higher cup weight, probably due to compacting of fruit during blanching prior to freezing. One cup of frozen, unsweetened berries is given a weight of 150 grams; and frozen, sweetened berries are given 165 grams cup weight because of added sugars.

Melons: Casaba, cantaloupe, and honeydew melons weigh about 170 grams per cup, and therefore 170 grams is chosen as one cup weight for all types of melons. An exception is watermelon with a cup weight of 150 grams.

Citrus fruit: One cup weight of all raw commercial varieties of oranges is 180 grams, Florida oranges 185 grams, and tangerines and mandarins 195 grams. A cup weight of 185 grams is chosen for these fruits. Lemon, lime, and grapefruits have a higher cup weight, and are assigned the cup weight of lemon, which is 210 grams.

Other fruits: For most of the fruits categorized as other fruits, weights were rounded to the nearest zero or five grams such as apples 110 grams, banana 150 grams, papaya 140 grams, peaches 154 grams rounded to 155 grams, and nectarines 143 grams rounded to 145 grams.

Fruit juices, nectars and fruit juice drinks: Single strength fruit juices and fruit juice drinks are assigned a cup weight of 250 grams; frozen juice concentrates 70 grams; and fruit nectars 250 grams. Fruit nectars and fruit juice drinks contain added sugars in addition to fruit juice or pulp. Only a few fruit nectars have label information as to the amount of fruit contained in them which ranged from 25 to 45 percent. Due to a lack of detailed information as to the percentage of fruit pulp or juice present in fruit nectars, it was decided that all types of fruit nectars contained 40 percent of fruit juice or pulp. Fruit juice drinks were assumed to contain 15 percent fruit juice. Consequently, 100 grams of nectars and fruit juice drinks contain 0.16 and 0.06 cup equivalents of fruit juice, respectively. In addition, the added sugars present in nectars and fruit juice drinks are computed, after subtracting sugars naturally present in the Fruit Juice components.

Examples:

1. Mango nectar

One cup weight of mango pulp
Number of cup equivalents per 100 grams
Number of cup equivalents in FPED
(40% fruit juice assumed)

$$
\begin{aligned}
& =250 \mathrm{~g} \\
& =100 / 250=0.4 \text { cup eq. } \\
& =(0.4 \times 0.4) \text { cup eq. } \\
& =0.16 \text { cup eq. }
\end{aligned}
$$

2. Fruit juice drink, low calorie

One cup weight of fruit juice drink
Number of cup equivalents per 100 grams
Number of cup equivalents in FPED
(15% fruit juice assumed)

$$
\begin{aligned}
& =250 \mathrm{~g} \\
& =100 / 250=0.4 \text { cup eq. } \\
& =(0.4 \times 0.15) \text { cup eq. } \\
& =0.06 \text { cup eq. }
\end{aligned}
$$

Frozen fruit juice concentrates: The determination of one cup weight for frozen fruit concentrate is described below.

Example: Frozen orange juice concentrate

One cup weight of orange juice frozen concentrate $\quad=284 \mathrm{~g}$
Frozen orange juice concentrate is made to single-strength by adding 3 parts water to 1 part juice concentrate.
Dilution factor to bring frozen concentrate to single strength juice $=4$
Weight of frozen orange juice concentrate to produce 1 cup single strength juice $=284 / 4=71$

Rounded weight $=70 \mathrm{~g}$
Canned fruit: The weights of one cup equivalent of canned fruits are as follows: in water pack or juice pack 245 grams, in light syrup 250 grams, and in heavy syrup 255 grams. Fruit canned in 100% fruit juice, water, light or heavy syrups were assumed to contain 65 percent fruit and 35 percent liquid medium. Fruits canned in fruit juice contain 65 percent fruit and 35 percent juice. The juice in juice packs is assigned to Fruit Juices and the fruit to the respective Fruit component. In addition, the added sugars in the syrup are computed, after subtracting the naturally present sugars in fruits.

Example: Canned pineapple in light syrup

One cup weight of canned pineapples in light syrup $\quad=250 \mathrm{~g}$ Number of cup equivalents per 100 grams Number of cup equivalents in FPED (65% fruit assumed)

$$
\begin{aligned}
& =100 / 250=0.4 \text { cup eq. } \\
& =(0.4 \times 0.65) \text { cup eq. } \\
& =0.26 \text { cup eq. }
\end{aligned}
$$

Dried Fruit: The weight of $1 / 2$ cup of dried fruit is defined as one cup equivalent.

Multi-ingredient Foods Containing Fruit

Fruit present in multi-ingredient foods such as fruit salads, cakes, ice cream, and other desserts; fruit juices present in cocktails, fruit nectars, and fruit juice drinks are assigned to the appropriate Fruit component. Ingredients other than fruit or fruit juice are assigned to the respective FP components.

Table 8 summarizes one cup equivalent weight of selected Fruit Group foods. Appendix 8 includes an extensive list of one cup equivalent weights for fruits and fruit juices.

Table 8. Fruit Group: Summary of Selected Cup Equivalent Weights

Fruit type	Weight of one cup equivalent (g)	Additional information
All types of berries, raw	145	
All types of berries, frozen, unsweetened	150	
All types of berries, frozen, sweetened	165	
Citrus fruit, oranges	185	
All melon types (except, watermelon), raw	170	Watermelon 150 grams/cup
All other fruits, raw	varied	Weights rounded to nearest 0 or 5 grams
Fruit juice (100\%)	250	
Fruit juice concentrate, frozen	70	
Canned fruit in juice pack	245	65\% fruit assumed, 35\% juice
Canned fruit in water pack	245	65\% fruit assumed
Canned fruit in light syrup	250	65\% fruit assumed; added sugars computed
Canned fruit in heavy pack	255	65\% fruit assumed; added sugars computed
Canned fruit water or juice pack, drained	190	
Canned fruit syrup pack, drained	200	
Applesauce	245	
Fruit nectar	250	40\% fruit juice assumed; added sugars computed
Fruit juice drinks	250	15% fruit juice assumed; added sugars computed
Dried fruit	45-90	Weights, rounded
Dried fruit, cooked or stewed	250	

Chapter 4

Vegetables Group

This section discusses the Vegetables Group components and the determination of the amount of Food Patterns equivalents for its components, with examples. Olives, avocados, and plantains are used as vegetables in meals, and hence are included in the Vegetables Group in the USDA Food Patterns.

Vegetables Group Components

The Vegetables Group consists of five components: Dark Green, Red and Orange, Starchy, Other, and Beans, Peas, and Lentils (Legumes). Beans, Peas, and Lentils can also be treated as Protein Foods. Vegetable juices were included under the respective vegetables; FPED does not have a separate vegetable juice component.

The Dark Green Vegetables component includes arugula, basil, beet greens, bitter melon leaves, broccoli, Chinese cabbage (pak-choi), chrysanthemum garland, chard, cilantro, collards, cress, dandelion greens, kale, lambsquarters, lettuce (Boston, butterhead, cos, romaine, green leaf, and red leaf), mustard cabbage, mustard greens, parsley, poke greens, spinach, turnip greens, and watercress.

The Red and Orange Vegetables component includes calabaza (Spanish pumpkin), carrots, red chili peppers, red or orange bell peppers, pimento (pimiento), pumpkin, squash (most winter types), sweet potatoes, and tomatoes.

The Starchy Vegetables component includes breadfruit, burdock, cassava (yuca blanca), corn, lima beans, immature or raw (not dried) peas (e.g., cowpeas, blackeye peas, green peas, pigeon peas), jicama or yam beans, plantain, poi, white potatoes, salsify, tapioca, taro, water chestnuts, and yam.

The Other Vegetables component includes artichoke, asparagus, avocado, bamboo shoots, beans (green, string), bean sprouts, beets, bitter melon (bitter gourd, balsam pear), broccoflower, Brussels sprouts, cabbage (green, red, savoy), cactus (nopales), cauliflower, celeriac, celery, chayote or christophine, chives, cucumber, eggplant, fennel bulb, garlic, ginger root, kohlrabi, leeks, lettuce (iceberg and others not included under dark green category), luffa (Chinese okra), mushrooms, okra, olives, onions, peppers (chili and bell types that are not red or orange in color), radicchio, sprouted beans (e.g. sprouted mung beans), radish, rutabaga, squash (summer), snow peas, tomatillos, turnips, and winter melons.

The Beans, Peas, and Lentils (Legumes) component includes all mature or dried beans, peas, and lentils s (legumes) such as black beans, blackeye peas, brown beans, bayo beans, carob, chickpeas (garbanzo beans), fava beans, kidney beans, lentils, lima beans, mung beans, navy beans, pink beans, pinto beans, split peas, white beans, and soybeans. Soy flour, soy isolate, and soy concentrate are not
included in the Beans, Peas, and Lentils component, but are assigned to Protein Foods (variable name: PF_Soy).

Appendix 1 lists foods in the Vegetables Group.

Determination of Cup Equivalent Weights of Vegetables and Vegetable Juices

One cup of raw, canned, frozen, or cooked vegetable, two cups of raw, leafy vegetables, one cup of cooked beans, peas, and lentils (legumes), or one cup of 100% vegetable juice are defined as one cup equivalent of vegetables. The cup weights used are the same as those used in the previous FPEDs. The weights of one cup equivalent of vegetables are rounded to the nearest zero or five grams. Variations in the cup weights exist among some of the vegetables in the dark green, red and orange, starchy, or other vegetables categories; and the cup weights are consolidated as much as possible.

- Sliced, diced, or chopped raw vegetables are given the same cup weight because FNDDS food code descriptions do not specify the types of cuts. Most often, the cup weights were the average weights of different cuts. For example, raw carrots are assigned 125 grams cup weight, which is an average of one cup of sliced (122 g) and chopped (128 g) carrots; bell peppers are assigned 120 grams cup weight, which is an average of one cup sliced (92 g) and chopped (149 g); and one cup of broccoli was assigned 80 grams, which is an average of broccoli flowerets (71 g) and chopped broccoli (88 g).
- In general, raw vegetables have lower cup weights than their cooked counterparts. Examples include carrots, raw 125 grams, cooked 145 grams; cucumber, raw 120 grams, cooked 180 grams; eggplant, raw 80 grams, cooked 95 grams; bell peppers, raw 120 grams, cooked 135 grams; and mushrooms, raw 70 grams, cooked 155 grams. This highlights the fact that a person eating cooked vegetables will have to eat greater amounts to get the same number of cup equivalents as a person eating raw or uncooked vegetables.
- Most often, the same cup weights are used regardless of whether a cooked vegetable is prepared from raw (fresh), frozen, or canned form of vegetables, with a few exceptions. Vegetables for which the same cup weights are assigned regardless of the form include artichoke, asparagus, beets, Brussels sprouts, cabbage, carrots, corn, onions, peas, peppers, pumpkin, summer squash, sweet potatoes, and turnips. Where the cup weights of canned or frozen vegetables are quite different from the respective vegetables cooked from fresh or NS as to form, two sets of cup weight are used, as described below.
- Dark green, leafy vegetables such as collards, greens, kale, mustard greens, spinach, and turnip greens have the same cup weights when prepared from fresh (raw) and different set of cup weights if prepared from frozen or canned forms.
- Other vegetables such as okra and string beans and starchy vegetables such as immature lima beans prepared from fresh or NS as to forms are assigned the same cup weights, and that prepared from frozen or canned have a different set of cup weights.
An explanation for the observed higher weights of canned and frozen vegetables could be due to the compacting of leafy vegetables and some of the other non-leafy vegetables during blanching.
- The FNDDS weights for one cup of cooked beans, peas, and lentils (legumes) range from 170 to 191 grams, with an exception of mung beans which weigh 200 grams per cup. Most of the cup weights for beans are between 172-177 grams. A cup weight of beans not specified as to type of beans is 175 grams. For this reason, cooked beans, peas, and lentils (legumes) are assigned 175 grams cup weight. The average value of the conversion factors that are used in the USDA's Food Intakes Converted to Retail Commodities Database, 2003-08 [6], to convert cooked legumes to uncooked legumes is 0.33 . And so, one cup of uncooked legumes is assigned as 60 grams weight ($175 \times 0.33=58$, then rounded to 60).
- The assigned weights of one cup of potatoes and potato products are: boiled potatoes and canned potatoes, drained, 155 grams; baked or roasted potatoes, 120 grams; and potato chips, 57 grams (2 oz.).
- The weight of $1 / 2$ cup of dried vegetables is defined as one cup equivalent of vegetables.
- One cup of raw tomatoes is assigned 170 grams; tomato paste and puree, 120 grams; tomato sauce and tomato juice, 245 grams; and dried tomatoes, 25 grams.

Table 9 summarizes one cup equivalent weight of vegetables discussed above and a few additional vegetables. Appendix 9 includes an extensive list of one cup equivalent weights for vegetables.

Table 9. Vegetables Group: Summary of Selected Cup Equivalent Weights

Vegetables	Weight of one cup equivalent (g)
Artichoke, raw	150
Artichoke, cooked from raw, frozen, or canned	175
Asparagus, raw	135
Asparagus, cooked from raw, frozen, or canned	180
Avocados, raw	145
Bean sprouts, raw	105
Bean sprouts, cooked from raw, or canned	125
Beets, raw	135
Beets, cooked from raw, frozen, or canned	170
Bitter melon, cooked	125
Broccoflower, raw	110
Broccoflower, cooked	125
Broccoli, raw	80
Broccoli, cooked from raw, frozen, or not specified as to form	155
Brussels sprouts, raw	90
Brussels sprouts, cooked from raw, frozen, or not specified as to	155
form	90
Cabbage, (green, red, or savoy), raw	90
Cabbage, (green, red, or savoy), cooked	150
Cabbage, Chinese (pak-choi), raw	140
Cabbage, Chinese (pe-tsai), raw	150
Carrots, raw	125
Carrots, cooked from raw, frozen, or canned	145
Cauliflower, raw	110
Cauliflower, cooked from raw, frozen, or not specified as to form	125
Cauliflower, cooked from canned	180
Celery, raw	120
Celery, cooked	150
Collards, raw	70
Collards, cooked from fresh or not specified as to form	130
Collards, cooked from frozen or canned	165
Corn, raw	150
Corn, cooked from raw, frozen, or canned	165
Cucumber, raw	120
Cucumber, cooked	180
Eggplant, raw	80
Eggplant, cooked	95

Table 9. Vegetables Group: Summary of Selected Cup Equivalent Weights (Continued)

Vegetables	Weight of one cup equivalent (g)
Kale, cooked from fresh or not specified as to form	130
Kale, cooked from frozen or canned	165
Beans, peas, lentils (legumes), uncooked	60
Beans, peas, lentils (legumes), cooked	175
Lima beans, raw, immature	155
Lima beans immature, cooked from fresh or not specified as to form	170
Mushrooms, raw	70
Mushrooms, cooked from raw, frozen, or canned	155
Mustard greens, cooked from fresh	140
Mustard greens, cooked from canned, frozen, or not specified as to form	150
Okra, raw	115
Okra, cooked from fresh	160
Okra, cooked from frozen or canned	170
Onions, raw	160
Onions, cooked from raw, frozen, or not specified as to form	210
Peppers: bell, chili and all types, raw	120
Peppers: bell, chili and all types, cooked from raw, frozen, or not specified as to form	135
Potatoes, baked	$57(2$ oz.)
Potatoes, boiled or canned and drained	120
Potato chips, snack-type	155
Pumpkin, raw	$57(2$ oz.)
Pumpkin, cooked from raw, frozen, or canned	115
Spinach, raw	245
Spinach, cooked from fresh or not specified as to form	70
Spinach, cooked from frozen or canned	150
Squash, summer, raw	170
Squash, summer, cooked from raw, frozen, or canned	180
Squash, winter type, raw	115
Squash, winter type, cooked or baked	205
Squash, winter type, mashed	245
String beans, raw	110
String beans, cooked from fresh or not specified as to form	125
String beans, cooked from frozen or canned	200
Sweet potatoes, boiled or baked	135
Sweet potato chips	10

Table 9. Vegetables Group: Summary of Selected Cup Equivalent Weights (Continued)

Vegetables	Weight of one cup equivalent (g)
Tomatoes, raw	170
Tomatoes, dried	25
Tomato paste	120
Tomato puree	120
Tomato sauce	245
Turnips, raw	130
Turnips, cooked from raw, frozen, or canned	155
Turnip greens, cooked from fresh	145
Turnip greens, cooked from canned, frozen, or not specified as to form	160
Juices: 100% vegetable juices, all types	245

Naturally Occurring Fats in Olives and Avocado

Among vegetables, olives and avocado have naturally occurring fat in much higher amounts than the rest of the other vegetables in FPED. Next to olives and avocado, fresh sweet corn has the highest amount of naturally occurring fat. The amount of naturally occurring fat in fresh sweet corn was defined as the allowable fat in raw vegetables. Fresh corn contains 1.5 grams of naturally occurring fat per 100 grams which equals 2.25 grams per cup equivalent. The fats naturally occurring in olives and avocado in amounts greater than 1.5 grams per 100 grams are assigned to the Oils component (USDA, Center for Nutrition Policy and Promotion, personal communication, February 8, 2013).

Addition of Fats or Sugars to Vegetables

Fats added to vegetables during cooking or at the table (e.g., butter or sour cream added to baked potato) are appropriately assigned to either Oils or Solid Fats. Sugars added to relishes and pickles are assigned to Added Sugars.

Data Analysis Guidance: White Potatoes and Tomatoes

White potatoes and tomatoes are consumed in large amounts and researchers are interested in estimating their consumption. Hence these two vegetables have their own individual component assignments to aid data analysis. FPED variables v_starchy_potato includes potatoes only; v_starchy_other includes all starchy vegetables, except potatoes; and v_starchy_total is the sum of the previous two variables. Similarly, v_redor_tomato includes tomatoes and tomato products;
v_redor_other includes all other red and orange vegetables, except tomatoes; and v_redor_total is the sum of the previous two variables.

Data Analysis Guidance: Beans, Peas, and Lentils

Beans, Peas, and Lentils (Legumes) can be considered either in the Vegetables or Protein Foods component, but not in both components simultaneously. For convenience, FPED has both component forms: Vegetables (v_legumes) and Proteins Foods (pf_legumes). When considered as Vegetables, beans, peas, and lentils (legumes), are computed in cup equivalents. When considered as Protein Foods, they are computed in ounce equivalents. One cup equivalent of beans, peas, and lentils equals 4 ounce equivalents of protein foods. Appendix 10 includes a list of one cup equivalent weights for beans, peas, and lentils (legumes).

Example:

1 cup equivalent of beans, peas, and lentils (legumes) computed as Vegetables $=$ 4 ounce equivalents of beans, peas, and lentils (legumes) as Protein Foods.

Multi-ingredient Foods Containing Vegetables

Vegetables present in multi-ingredient foods such as soups, salads, pizza, sandwiches, and vegetable dishes are assigned to the appropriate Vegetables component.

Chapter 5

Grains Group

This section discusses the Grains Group components and the determination of the amount of Food Patterns equivalents for its components, with examples.

Grains Group Components

The Grains Group consists of two components: Whole Grains and Refined Grains (non-whole grains). Whole Grains include amaranth, barley (not pearled), brown rice, buckwheat, bulgur, millets, oats, popcorn, quinoa, dark rye, triticale, wholegrain cornmeal, whole-grain wheat flour, whole-grain cracked wheat, wild rice, and grain-based products made with 100% whole grains or their flours. Refined Grains (non-whole grains) include grains that are degermed or polished and their flours or meal, cornmeal, masa, corn grits, bran of all cereals, cream of rice, cream of wheat, cracked wheat, malted barley or malted flours, pearled barley, rye (light and medium), wheat gluten, and white rice.

Appendix 1 lists foods in the Grains Group.

Determination of Ounce Equivalents of Grains

The method of computing grain equivalents is described below. The Choosemyplate.gov Web site lists consumer-friendly examples of what counts as one ounce grain equivalent [2]. These examples are based on common portion sizes such as one slice of bread, one-half cup of cooked rice, and one cup of ready-to-eat cereal, instead of the actual amount of grains present in these foods. Using common portion sizes to compute grain equivalents poses a challenge because standard rules cannot be applied across all foods, whereas using the actual amounts of grains present in a food to determine grain equivalents offers a systematic approach to creating FPED.

Two different definitions of what counts as one ounce grain equivalent are used in FPED:

- For grain products such as breads, bagels, biscuits, muffins, cakes, cookies, pancakes, and waffles made with flour, each 16 grams of flour present in a food was used as the basis for defining one ounce grain equivalent, the rationale being that one standard slice of bread has been defined as equal to one ounce grain equivalent will contain 16 grams of flour.
- For intact grains or grain products such as cream of wheat, barley, bulgur, millets, oats, pasta, rice, rye, quinoa, and ready-to-eat cereals, 28.35 grams of grains was defined as equal to one ounce grain equivalent.

To evaluate this approach, bagels, biscuits, breads, muffins, grain snacks, baked grain products, pancakes, pasta, rice, and ready-to-eat cereals in FNDDS 4.1 for

WWEIA, NHANES 2007-08 were selected. The grain equivalents were computed by two methods: (1) using the definitions based on the common portion sizes of the foods, and (2) using FPED definitions described above and the actual amounts of the grains present in foods [11]. The differences in the amounts of grain equivalents computed by the two methods were not appreciable; and the national mean intakes of grain equivalents estimated were the same. Using the amounts of grains present in grain-based foods offers a standardized method for the computation of grain equivalents.

Table 10 summarizes foods grouped based on the definition of one ounce of grain equivalents.

Table 10. Amounts of Grain in One Ounce Equivalent

Grain amounts in one ounce equivalents	Foods	
16 grams flour	Bagels Biscuits Breads and rolls Cakes Cookies Crackers Danishes Doughnuts	Grain based snacks (e.g., pretzels, tortilla chips, corn chips) Gravies and sauces Muffins and quick breads Pancakes and waffles Pies Tortillas
28.35 grams grain	Barley Buckwheat Bulgur Couscous Hot cereals (e.g., cream of wheat/rice, farina, grits, oatmeal)	Millets Pasta Popcorn Quinoa Ready-to-eat cereals Rice

Multi-ingredient Foods Containing Grains

Grains present in multi-ingredient foods such as breads, rice and vegetable dishes, macaroni and cheese, and noodle soups are assigned to Whole or Refined Grains components, as appropriate.

Chapter 6

Dairy Group

This section discusses the Dairy Group components and the determination of the amount of Food Patterns equivalents for its components, with examples.

Dairy Group Components

The Dairy Group consists of four components: Milk, Yogurt, Cheese, and Miscellaneous Dairy, which is predominantly whey. The Milk component includes all types of fluid milk, buttermilk, dry milk, and evaporated milk, with different levels of fat. Soy milk (soymilk) with added calcium is included in the Milk component. Soy milk (soymilk) without calcium fortification is assigned to Soy Products. The Yogurt component includes plain yogurt, flavored yogurt, fruit yogurt, and frozen yogurt, containing different levels of fat. The Cheese component includes all types of cheeses such as natural cheese, soft cheese, processed cheese, and cheese food. Examples of cheeses include brie, camembert, cheddar, cottage cheese, colby, edam, feta, fontina, gouda, gruyere, limburger, Mexican cheeses (queso anejo, queso asadero, queso chihuahua), monterey, mozzarella, muenster, parmesan, provolone, ricotta, and Swiss. The Miscellaneous Dairy component includes whey. Because its national mean intake is minuscule, the Miscellaneous Dairy component is not a standalone FPED variable, and it is included under the Total Dairy component. The Dairy Group does not include dairy fats such as butter, cream, and cream cheese, which are assigned to the Solid Fats component. Appendix 1 lists foods in the Dairy Group.

Solid Fats Naturally Present in Dairy Foods

Milk fat is classified as solid fat. The fat naturally present in milk, yogurt, and cheese in excess of 1.5 grams per cup equivalent is assigned to the Solid Fats component.

Determination of Cup Weights of Dairy Group

One cup equivalent weight of selected foods in the Dairy Group are listed in Table 11. Appendix 11 includes a list of one cup equivalent weights for dairy group foods.

Table 11. Dairy Group: Summary of Selected Cup Equivalent Weights

Dairy	Weight of 1 cup equivalent
Fluid milk, all fat types, plain or flavored	245 g
Buttermilk	245 g
Dry milk, reconstituted	245 g
Soy milk (soymilk), calcium fortified	245 g
Evaporated milk	125 g
Dry milk	25 g
Yogurt, all fat types, plain or flavored, without fruit	245 g
Yogurt, frozen, sweetened with low-calorie sweetener	245 g
Cheese, natural	1 to 2 oz.
Cheese, natural, soft	4.5 oz.
Cheese, processed	1.5 to 2 oz.

Other Considerations

Flavored milk: All types of flavored milk are assigned as 100 percent milk. In addition, added sugars are computed, if they are present. Whey present in beverages will be counted under the Miscellaneous Dairy Component.

Yogurt with fruit or nuts: Fruit yogurts are assumed to contain six percent fruit, and three percent nuts, if nuts are present. In addition, added sugars are computed, if they are present.

Cheeses: In general, cup equivalents for various cheeses are set using several categories, based on the type of cheese and approximate calcium content in comparison to the calcium in one cup of milk. For cream cheeses, only the fat-free form of cream cheese is assigned to the Cheese component (CNPP, personal communication, December 17, 2012). Regular and low fat cream cheeses are not assigned to the Cheese component due to their low calcium content; only the fat present in these two cheeses are assigned to the Solid Fats component, as in the case for all types of cheese. Also, one cup equivalent of cottage cheese is defined as the amount containing 302 milligrams of calcium, the amount present in a cup of milk.

Multi-ingredient Foods Containing Dairy Components

The milk present in multi-ingredient foods such as half and half and ice cream are assigned to the Milk component; yogurt present in frozen yogurt is assigned to the Yogurt component; and cheese present in sandwiches, salads, and pizza are assigned to the Cheese component.

Chapter 7

Protein Foods

This section discusses the Protein Foods components and the determination of the amount of Food Patterns equivalents for its components, with examples.

Protein Foods Components

The Protein Foods Group consists of Meat, Poultry, Seafood, Eggs, Nuts and Seeds, Beans, Peas, and Lentils (or Legumes), and Soy Products (except, calcium added soy milk assigned to the Dairy Group and raw, green soybean assigned to the Vegetables Group). The Meat and Poultry components were further subdivided into: Meat (pf_meat); Poultry (pf_poultry); Organ Meat (pf_organ); and Cured Meat (pf_curedmeat) to facilitate detailed data analysis. The Seafood component is divided into: Seafood that are high in $n-3$ fatty acids (pf_seafd_hi) and Seafood that are low in $n-3$ fatty acids (pf_seafd_lo).

The Meat component includes red meat [1] such as beef, goat, lamb, pork (includes fresh or uncured ham), veal, and game meat (e.g., bear, bison, moose, opossum, rabbit, raccoon, squirrel, venison). The Poultry component includes chicken, Cornish hens, dove, duck, game birds (e.g. ostrich, pheasant, quail), goose, and turkey. The Cured Meat component includes cured or smoked meat products such as frankfurters, sausages, and luncheon meats, cured meat made from beef, chicken, pork, and turkey. The Organ Meat component includes brain, chitterlings, giblets, gizzard, heart, kidney, liver, stomach, sweetbreads, thymus, tongue, and tripe.

The following Food and Drug Administration (FDA) definitions [12] are used for classification of cured meat and poultry products. Cured meat and poultry can be divided into three basic categories: (1) uncomminuted smoked products; (2) sausages; and (3) uncomminuted, unsmoked processed meat and poultry products, as defined by FDA are listed in Table 12.

Table 12. FDA Cured Meat and Poultry Categories

FDA cured meat and poultry categories	Foods included within the category
(1) Uncomminuted smoked products	Include bacon, beef jerky, hams, pork shoulders, turkey breasts, turkey drumsticks.
(2a) Sausages	Include both finely ground and coarsely ground products. - Finely ground sausages include bologna, frankfurters, luncheon meats and loaves, sandwich spreads, and viennas. Coarse ground sausages include chorizos, kielbasa, pepperoni, salami, and summer sausages.
(2b) Cured sausages	Cured sausages may be categorized as (1) raw, cured; (2) cooked, smoked; (3) cooked, unsmoked; and (4) dry, semidry, or fermented.
(3) Uncomminuted, unsmoked processed products	Include corned beef, pastrami, pig's feet, and corned tongues. This category of products may be sold either as raw ready-to-cook or ready-to-eat.

Computation of $\boldsymbol{n} \mathbf{- 3}$ fatty Acids Cutoff per 100 Grams of Seafood

The only $n-3$ fatty acids of interest are the long chain fatty acids, EPA and DHA. The Seafood component is further subdivided into: (1) high in $n-3$ fatty acids and (2) low in $n-3$ fatty acids. Cooked seafood containing 500 mg or more of $n-3$ fatty acids (EPA and DHA) per three ounces was assigned as seafood high in $n-3$ fatty acids [13]. This translates to 588 milligrams per 100 grams of cooked fish as shown below.
$3 \mathrm{oz} .=3 \times 28.35 \mathrm{~g}=85.05 \mathrm{~g}$
85 grams of cooked high $n-3$ seafood should contain at least 500 mg of $n-3$
100 grams of cooked high $n-3$ seafood should contain at least $(500 / 85) \times 100$
$=588 \mathrm{mg} n-3$ fatty acids

To estimate the cutoff amount of $n-3$ fatty acids in raw fish, a cooking yield of 77 percent is applied. The amount of 452 milligrams of $n-3$ fatty acids per 100 grams of raw seafood is used to categorize seafood to one of the two $n-3$ groups. The computation is described below.

Computation of Raw Seafood n-3 Cutoff Amount

130 g raw fish will yield 100 g cooked fish (77% yield)
Cutoff n-3 fatty acid amount $\quad=588 \mathrm{mg}$ per 100 g cooked or 130 g raw
Cutoff $n-3$ fatty acid amount $=(588 / 130) \times 100$
$=452 \mathrm{mg}$
Examples of seafood that are high in $n-3$ fatty acids include anchovy, herring, mackerel, salmon, sardine, shark, trout, and bluefin and albacore tuna. Seafood low in $n-3$ fatty acids include catfish, clams, cod, crabs, crayfish, croaker, eel, flounder, haddock, lobster, mussels, octopus, oyster, perch, pollock, scallop, shrimp, snapper, tilapia, tuna (other than bluefin and albacore) and turtle. Canned tuna fish was divided between the two seafood components: 30.5% high in $n-3$ and 69.5% low in $n-3$ (USDA, Center for Nutrition Policy and Promotion, personal communication, October 17, 2014). Appendix 1 lists seafood in the two $n-3$ components.

The Eggs component includes chicken eggs and other birds' eggs and their components such as egg yolk, egg white, liquid egg, dried eggs, and egg substitutes containing egg whites. The Nuts component includes nuts, nut butters, seeds, and seed butters. The Soy Products component includes all soy products except calcium added (fortified) soy milk (soymilk) and raw, green soybean cooked as vegetables. The Soy Products component includes soy flour, soy protein isolate, soy concentrate, tofu, and soy milk (soymilk) that is not calcium fortified. The Beans, Peas, and Lentils (Legumes) component includes all mature or dried beans, peas, and lentils (legumes) such as black beans, black-eyed peas, brown beans, bayo beans, carob, chickpeas (garbanzo beans), fava beans, kidney beans, lentils, lima beans, mung beans, navy beans, pink beans, pinto beans, and white beans.

Appendix 1 lists foods in the Protein Foods Group. The definitions of an ounce equivalent of protein foods are in Table 13.

Table 13. Definitions of One Ounce Equivalent of Protein Foods

Protein Foods components	Definition of one ounce equivalent				
Lean meat/poultry	28.35 grams of cooked, lean portion of meat/poultry containing no more than 2.63 grams of solid fats naturally present, per ounce equivalent				
Lean seafood	28.35 grams of cooked, lean portion of seafood containing no more than 2.63 grams of fats naturally present as oils, per ounce equivalent				
Eggs	50 grams, raw or cooked	$	$	Nuts and seeds	16 grams or (28.35/2) grams tablespoon)
:---	:---				
Nut butters	$4 \times$ the number of cup equivalents of legumes as vegetables (i.e., $1 / 4$ cup of cooked legumes as vegetables equals 1 ounce equivalent of legumes as protein foods. 1 cup equivalent of cooked legumes = 175 grams in FPED)				
Soy flour, isolate or concentrate	$1 / 2$ ounce or $(28.35 / 2)$ grams				
Soy, tofu	$1 / 4$ cup or $(250 / 4)$ grams				
Soy nuts	28.35 grams				

Solid Fats and Oils Naturally Present in Protein Foods

The fats naturally present in seafood, nuts, seeds, and legumes are defined as oils and fats present in meat, poultry, and eggs are defined as solid fats. The USDA Food Patterns allows 2.63 grams of fat or oils per ounce of lean meat and other protein foods. Any solid fats or oils that are naturally present above the allowable amounts are included under the Solid Fats or Oils components of the respective protein foods.

The method for calculating ounce equivalents for meat, poultry, and seafood disaggregates solid fats or oils while the method for eggs and nuts does not. The following section describes computation of these components.

Determination of Ounce Equivalents of Lean Meat in Cooked Meat, Poultry, and Seafood

By definition, one ounce of cooked lean meat, poultry, or seafood can have no more than 2.63 grams of allowable fat per 28.35 grams of lean meat. Or, 100 grams of cooked lean meat, poultry, or seafood will contain 100/28.35 or 3.53 ounces of lean meat with a maximum of (3.53×2.63) grams or 9.28 grams of allowable fat.

Non-fat portion

$$
\begin{aligned}
& =(100-9.28) \mathrm{g} \\
& =90.72 \mathrm{~g}
\end{aligned}
$$

Or, 90.72 grams of non-fat meat, poultry, or seafood can contain up to 9.28 grams of allowable fat or oils.

Or, Food Patterns allowable solid fat per ounce equivalent $\quad=2.63 \mathrm{~g}$
Non-fat meat portion per 28.35 grams (1 ounce) lean meat $=28.35-2.63$
$=25.72 \mathrm{~g}$

The following is derived from the above information:
(1) Any cooked meat, poultry, or seafood that has 9.28 percent or less total fat will not have either solid fats or oils above the allowable limits.
(2) Any cooked meat, poultry, or seafood that has 9.28 percent or less total fat will have 3.53 ounce equivalents of lean protein per 100 grams.

Examples:

The computation of Protein Food equivalents and Solid Fats or Oils components can be done in several ways. The computation used in FPED is described below.

Example 1. Pork sausage, cooked (FNDDS 2017-2018 food code 25221405)
Total fat content $=27.25 \%$
Because the total fat content is greater than 9.28, the cooked pork sausage will contain solid fats that are present above the allowable limit.

Non-fat meat portion present in 100 grams sausage
$=100-27.25$
$=72.75 \mathrm{~g}$
Number of ounce equivalents of meat
$=72.75 / 25.72$
$=2.83$
Allowable solid fat

Solid fat present above the allowable limit
$=2.63 \times 2.83$
$=7.44 \mathrm{~g}$
= 27.25-7.44
$=19.81 \mathrm{~g}$

Example 2. Pork, fresh, shoulder, blade, Boston (steaks), separable lean only, cooked, broiled

Total fat content $=12.54 \%$
Because the total fat content is greater than 9.28, the broiled pork steak will contain solid fats that are present above the allowable limit.

Non-fat meat portion present in 100 grams broiled pork steak $=100-12.54$
$=87.46 \mathrm{~g}$
Number of ounce equivalents of meat
$=87.46 / 25.72$
$=3.40$
Allowable solid fat
$=2.63 \times 3.40$
$=8.94 \mathrm{~g}$
Solid fat present above the allowable limit
$=12.54-8.94$
$=3.6 \mathrm{~g}$

Example 3. Cooked ground beef, 85\%-89\% lean

Total fat content $=13.9 \%$
Because the total fat content is greater than 9.28, the cooked ground beef will contain solid fats that are present above the allowable limit.

Non-fat meat portion present in 100 grams cooked ground beef $=100-13.9$
$=86.1 \mathrm{~g}$
Number of ounce equivalents of meat
$=86.1 / 25.72$
$=3.35$
Allowable solid fat
$=2.63 \times 3.35$
$=8.81 \mathrm{~g}$
Solid fat present above the allowable limit
$=5.1 \mathrm{~g}$

Example 4. Salmon, baked or broiled without added fat

Baked salmon without added fat contains 98 grams of baked salmon and a small amount of lemon juice and added salt per 100 grams (FNDDS food code: 26137123; added salt and lemon juice combined is about 2\%)

98 grams of baked salmon without added fat contains 5.54 percent total fat. Because this 5.54 percent fat is lower than the allowable oil level of 9.28 grams per 100 grams of salmon, the baked salmon will not contain any Oils component.

Number of ounce equivalents of seafood $=98 / 28.35$
$=3.46$

Example 5. Herring, baked without added fat

Baked herring without added fat contains 98 grams of baked herring and a small amount of lemon juice and added salt per 100 grams (FNDDS food code: 26119121; added salt and lemon juice combined is about 2%).

98 grams baked herring contain 11.39 percent total fat. Because this amount is greater than the allowable amount of 9.28 grams per 100 grams , the baked herring will have an Oils component

Non-fat, lean portion present in 100 grams	$=98-11.39$
	$=86.6 \mathrm{~g}$
Number of ounce equivalents of seafood	$=86.6 / 25.72$
	$=3.37$
Allowable oils	$=2.63 \times 3.37$
Oils present above the allowable limit	$=8.86 \mathrm{~g}$
	$=11.39-8.86$
	$=2.53 \mathrm{~g}$

Differences between FPID and FPED in the Calculation of Meat, Poultry, and Seafood Ounce Equivalents

In FPID, raw meat and poultry are assumed to have 75 percent cooking yield and the raw seafood is assumed to have 77 percent cooking yield. Cooked meat, poultry, and seafood ingredients are assumed to have 100 percent cooking yield (no moisture or fat loss during cooking). However, in FNDDS, some of the meat, poultry, and seafood, whether raw or cooked, may have varying levels of moisture loss and cooking yields. Because of the differences in cooking yields, the FPID FP equivalents are not used for the computation of meat, poultry, and seafood in FPED. In FPED, meat, poultry, and seafood equivalents are computed using FNDDS moisture change information.

The following examples show computations used in FPID.

FPID: Determination of Ounce Equivalents of Lean Meat in Raw Meat, Poultry, and Seafood as an Ingredient.

Here, no fat loss is assumed in cooking.
Examples

Raw (uncooked) pork

Pork, fresh, shoulder, (Boston butt), blade (steaks), separable lean and fat, raw (SR code: 10080). This is a raw (uncooked) ingredient and hence a cooking yield of 75% is assumed

Total fat=12.36\%
Cooking Yield $=75 \%$, assumed (cooked weight $=75 \mathrm{~g}$)
Fat loss during cooking 0% assumed (no fat loss).
Non-fat meat portion present in 100 grams pork steak

$$
\begin{aligned}
& =75-12.36 \\
& =62.64 \mathrm{~g} \\
& =62.64 / 25.72 \\
& =2.44 \\
& =2.63 \times 2.44 \\
& =6.42 \mathrm{~g} \\
& =12.36-6.42 \\
& =5.94 \mathrm{~g}
\end{aligned}
$$

Number of ounce equivalents of meat
Allowable solid fat

Solid fat present above the allowable limit

Raw mackerel

Raw mackerel contains 13.9 percent total fat. In computation, 77 percent cooking yield and no fat loss during cooking are used.

Non-fat, lean portion present in 77 grams of mackerel
Number of ounce equivalents of seafood
$=77-13.9$
$=63.1 \mathrm{~g}$

Allowable oils
$=63.1 / 25.72$
$=2.45$
$=2.63 \times 2.45$
$=6.44 \mathrm{~g}$
Oils present above the allowable limit
= 13.9-6.44
$=7.46 \mathrm{~g}$

Determination of Ounce Equivalents and Solid Fats Present in Eggs

Computation of the lean portion of eggs is parallel to that of meat, poultry, and seafood, except in eggs, the excess fat (solid fats) is not subtracted before calculating the ounce equivalents. The total fat content of eggs is included in calculating the ounce equivalents.

One ounce equivalent of eggs is defined as 50 grams and can have no more than 2.63 grams of allowable solid fat. The methodology for computing ounce equivalents is described below:
(1) The number of ounce equivalents is computed first, without subtracting the solid fats naturally present in eggs.
(2) Allowable solid fat is computed for the number of ounce equivalents computed in step 1.
(3) The amount of solid fat present above the allowable limit is computed by subtracting the allowable fat from the total fat.

Example:

1. Cooked eggs, boiled or poached (FNDDS food code: 31103010)

100 grams of hard-boiled eggs contain 9.44 percent total fat. Number of ounce equivalents of eggs per 100 grams (PF_EGGS) $=100 / 50=2$

Allowable fat per 2 ounce equivalents of eggs

$$
\begin{aligned}
& =2.63 \times 2 \\
& =5.26 \mathrm{~g} \\
& =9.44-5.26 \\
& =4.18 \mathrm{~g} \\
& =4.18 / 2 \\
& =2.09 \mathrm{~g}
\end{aligned}
$$

$$
\text { Solid fat present above the allowable limit } \quad=9.44-5.26
$$

Solid fat present per ounce equivalent of eggs

Determination of Ounce Equivalents and Oils Present in Nuts

Computation of lean portion of nuts is parallel to that of meat, poultry, and seafood, except in nuts, the excess fat (oils) is not subtracted before calculating the ounce equivalents. All fat present in nuts are included in calculating the ounce equivalents. The oil present above the allowable limit is calculated using the number of ounce equivalents.

One ounce equivalent of nuts is defined as $1 / 2$ ounce or 14.175 grams. The fats naturally present in nuts are defined as oils. The methodology for computing ounce equivalents is described below:
(1) The number of ounce equivalents is computed first, without subtracting the oils naturally present in nuts.
(2) Allowable oil is computed for the number of ounce equivalents computed in the above step.
(3) The amount of oils above the allowable limit is computed by subtracting the allowable fat from the total fat.

The oil present above the allowable limit is calculated using the number of ounce equivalents. As a result, the amount of oil present in one ounce equivalent of nuts will vary, as shown in the following examples.

Examples:

1. Dry roasted almonds

Dry roasted almonds contain 52.5 percent total fat.
Number of ounce equivalents of nuts per 100 grams $\quad=100 / 14.175$
$=7.05$
Allowable oils in 7.05 ounce equivalents
$=2.63 \times 7.05$
$=18.5 \mathrm{~g}$
Oils present above the allowable limit
= 52.5-18.5
$=\mathbf{3 4} \mathbf{g}$
100 grams of roasted almonds contain 7.05 ounce equivalents, and each ounce equivalent of roasted almonds will contain $(52.5 / 7.05)=7.45$ grams of fat, of which 4.82 grams ($7.45-2.63$) is also assigned to Oils component.

2. Macadamia nuts

Macadamia nuts contain 76.1 percent total fat.
Number of ounce equivalents of nuts per 100 grams $=100 / 14.175$
$=7.05$
Allowable oils in 7.05 ounce equivalents
$=2.63 \times 7.05$
$=18.5 \mathrm{~g}$
Oils present above the allowable limit
$=76.1-18.5$
$=57.6 \mathrm{~g}$

Each ounce equivalent of macadamia nuts will contain 10.8 grams of fat (76.1/7.05), of which 8.17 grams (10.8-2.63) is also assigned to Oils component.

Table 14 includes examples of the amount of oils present in one ounce equivalent of selected nuts.

Table 14. Amount of Oils Present in One Ounce Equivalent of Selected Nuts

Name	Fat content per 100 grams of nuts (g)	No. of ounce equivalents per 100 grams nuts	Amount of oils present per ounce equivalent of nuts (g) [A/7.05]
Almonds, dry roasted	52.5	7.05	7.45
Peanuts, dry roasted	49.7	7.05	7.05
Pecans	72.0	7.05	10.21
Pistachio, dry roasted	45.8	7.05	6.50
Walnuts, English	65.2	7.05	9.25

Multi-ingredient Foods Containing Protein Foods

Protein foods present in multi-ingredient foods such as sandwiches and subs; rice and meat or chicken dishes; soups; pizza; hotdogs; and frozen dinners are assigned to the appropriate Protein Foods components.

Chapter 8

Added Sugars

Added sugars are defined as sugars that are added to foods as an ingredient during preparation, processing, or at the table. Added sugars do not include naturally occurring sugars such as lactose present in milk and fructose present in whole or cut fruit and 100\% fruit juice. Examples of added sugars include brown sugar, cane sugar, confectioners' sugar, granulated sugar, dextrose, white sugar, corn syrup and corn syrup solids, fruit juice concentrates, honey, molasses, and all types of syrups such as maple syrup, table syrups, and pancake syrup.

Starting with FPED/FPID 2011-2012, fruit juice concentrates not diluted to single strength juices were assigned to added sugars, whereas in the FPEDs prior to 20112012, fruit juice concentrates were placed in the Fruit Juice component. This change affected the added sugars contents of foods such as snack bars, ready-toeat cereals, baby foods, and fruit spread. Frozen fruit juice concentrates that are diluted with water to single strength fruit juice before consumption were retained as fruit juice. Appendix 1 lists added sugars included in FPED.

Determination of Teaspoon Equivalents of Added Sugars

One teaspoon equivalent of added sugars is computed using the sugar content of foods defined as added sugars. One teaspoon equivalent of added sugars is defined as 4.2 grams of sugars, the amount present in one teaspoon of granulated sugar.

Computation of Added Sugars

Examples:

1. Granulated sugar

The sugar content of 100 grams of granulated sugar $=99.8 \mathrm{~g}$
Number of teaspoon equivalents in 100 grams granulated sugar $=99.8 / 4.2$
$=23.8$
2. Maple syrup

The sugar content of 100 grams of maple syrup $\quad=60.4 \mathrm{~g}$
Number of teaspoon equivalents in 100 grams maple syrup $\quad=60.4 / 4.2$
$=14.4$
3. Iced tea, instant, black, pre-sweetened with sugar

The sugar content of 100 grams of presweetened herbal tea $\quad=7.7 \mathrm{~g}$
Number of teaspoon equivalents in 100 grams of herbal tea $=7.7 / 4.2$
$=1.83$

4. Fruit canned in syrup

Added sugars present in fruit canned in syrups were estimated by subtracting total sugars present in fruit canned in water from fruit canned in syrup.

Apricot canned in heavy syrup contains 19.9 percent total sugars
Apricot canned in light syrup contains 14.9 percent total sugars
Apricot canned in water (water pack) contains 4.8 percent sugar. The 4.8 percent sugar is from apricot and hence is not added sugars.

Added sugars in apricot canned in heavy syrup

Added sugars in apricot canned in light syrup

$$
\begin{aligned}
& =(19.9-4.8) / 4.2 \\
& =15.1 / 4.2 \\
& =3.6 \text { tsp. eq. } \\
& =(14.9-4.8) / 4.2 \\
& =10.1 / 4.2 \\
& =2.4 \text { tsp. eq. }
\end{aligned}
$$

Multi-ingredient Foods Containing Added Sugars

Ingredients that are added sugars present in multi-ingredient foods such as cakes, cookies, milk shakes, and ice cream are assigned to the Added Sugars component.

Example:

Wheat bran muffin (FNDDS code 52304010)

The added sugars present in wheat bran muffin come from granulated sugar and molasses.

Ingredient*	Amount per 100 grams of muffin* (g)	Added sugars from ingredient (g)	Added sugars (tsp. eq.)
Wheat flour	21	-	
Oat bran	12	-	
Sugar, granulated	2	2	
Molasses	14	10.5	
Buttermilk, fluid	42	-	
Egg, whole raw	4	-	
Butter	4	-	
Baking soda	--	-	
	Total		12.5
$\mathbf{l n}$	$\mathbf{1 2 . 5 / 4 . 2 = 3}$		

[^2]
Chapter 9

Oils

Oils include all unhydrogenated vegetable oils (except palm oil, palm kernel oil, and coconut oil) and fats naturally present in nuts, seeds, avocado, olives, and seafood. Appendix 1 lists oils included in FPED.

Margarine

In MPED, tub margarines and margarine-like spreads were assigned to the Oils component and stick margarines were assigned to the Solid Fats component. We examined the food labels of these margarines. Almost all of the margarines, whether stick, tub, or spread have unhydrogenated vegetable oils as the first ingredient; partially hydrogenated oils and/or palm oil as the next ingredient(s); and water. As per the guiding principles used in developing FPED, the unhydrogenated vegetable oils present in margarines are assigned to Oils component; and the partially hydrogenated oils, palm oil, and palm kernel oils present in margarines are assigned to Solid Fats. We were unable to obtain data on the proportion of unhydrogenated vegetable oils and oils that are defined as solid fats in margarines. For this reason, the fat present in margarine was divided equally between Oils and Solid Fats. That is, margarine with a fat content of 80 grams per 100 grams is assigned 40 grams each to Oils and Solid Fats.

Avocado and Olives

Among vegetables, olives and avocado have naturally occurring fat in much higher amounts than the rest of the other vegetables in FPED. Next to olives and avocado, fresh sweet corn has the highest amount of naturally occurring fat. The amount of naturally occurring fat in fresh sweet corn was defined as the allowable fat in raw vegetables. Fresh corn contains 1.5 grams of naturally occurring fat per 100 grams, which equals 2.25 grams per cup equivalent (1 cup equivalent of fresh corn weighs 150 grams). The fats naturally occurring in olives and avocado in amounts greater than 1.5 grams per 100 grams are assigned to the Oils component.

Fats Naturally Present in Seafood, Nuts and Seeds

The gram equivalents of oils present in seafood and nuts and seeds are computed after subtracting 2.63 grams of allowable fat per ounce equivalents of protein foods from the total fat. Details on the computation of oils present in seafood and nuts and seeds are explained in the Protein Foods Section (Chapter 7).

Determination of Number of Equivalents of Oils

One gram of oil is defined as one equivalent. The following examples describe the computation of oil equivalents in 100 grams of food.

Examples:

1. Vegetable oils

Vegetable oils such as almond, canola, corn, peanut, sunflower, and soybean containing 100 grams of fat per 100 grams
Gram equivalents of oils in 100 grams of vegetable oil $=\mathbf{1 0 0}$
2. Margarine, $\mathbf{6 0 \%}$ fat, tub

Tub margarine containing 60 grams of fat per 100 grams Gram equivalents of Oils in 100 grams of tub margarine $\quad=60 / 2=30$
Gram equivalents of Solid Fats in 100 grams of tub margarine $\quad=60 / 2=30$

Multi-ingredient Foods Containing Oils

Oils present in multi-ingredient foods such as fried vegetables, fried rice, seafood dishes, ready-to-eat cereals that contain nuts, mayonnaise, and salad dressings are assigned to the Oils component.

Example:

Tzatziki sauce (FNDDS code 11440060)

Ingredient*	Amount per 100 grams of sauce (g)	Total fat from ingredient (g)	Oils (g)
Yogurt, Greek, plain, whole milk	56	2.8	-
Cucumber, with peel, raw	37	-	
Oil, olive	3.5	3.5	3.5
Lemon juice	2	-	
Salt	-	-	
Garlic, raw	-	-	
	Total		$\mathbf{3 . 5}$

* Amounts rounded and the total may not add to 100

The oil present in Tzatziki sauce comes from the olive oil. Fat present in other ingredients are not in the Oils group, by definition.

Chapter 10

Solid Fats

Solid fats include fats naturally present in dairy products such as milk, cheese, butter, cream, cream cheese, and sour cream; fats naturally present in meat, poultry, and eggs; lard; fully or partially hydrogenated fats and shortenings; cocoa butter; coconut oil; and palm oil. The fat present in stick and tub margarines and margarine spreads was divided equally between Oils and Solid Fats. Appendix 1 lists solid fats included in FPED.

Determination of Number of Equivalents of Solid Fats

One gram of fat is defined as one equivalent. The following examples describe the computation of solid fats equivalents in 100 grams of food.

Examples:

1. Coconut oil or palm oil

Vegetable oils such as coconut and palm oil containing 100 grams of fat per 100 grams
Gram equivalents of solid fats per 100 grams of coconut or palm oil =100
2. Coconut meat, raw

Raw coconut meat containing 33.5 grams of fat per 100 grams
Gram equivalents of solid fats per 100 grams of raw, coconut meat $=\mathbf{3 3 . 5}$

3. Butter

Butter containing 81.1 grams of fat per 100 grams
Gram equivalents of solid fats per 100 grams of butter $=\mathbf{8 1 . 1}$

4. Stick margarine

Stick margarine containing 80 grams of fat per 100 grams
Gram equivalents of Oils in 100 grams of stick margarine $=80 / 2$

$$
=40
$$

Gram equivalents of Solid Fats in 100 grams of stick margarine $\quad=80 / 2$

$$
=40
$$

Solid Fats Naturally Present in Dairy, Meat, Poultry, and Eggs

The gram equivalents of solid fats present in meat, poultry, and eggs are computed after subtracting 2.63 grams of allowable fat per ounce equivalent of these protein foods from the total fat. The amount of allowable fat in the Dairy component is 1.5 grams per cup equivalent. Details on the computation of solid fats present in meat, poultry, and eggs are explained in the Dairy and Protein Foods sections.

Multi-ingredient Foods Containing Solid Fats

Solid fats present in multi-ingredient foods such as cakes, cookies, pies, pizza, meat dishes, and ice cream are assigned to the Solid Fats component.

Example:

Honey butter (FNDDS code 81322000)

Ingredient*	Amount per 100 grams of sauce (g)	Total fat from ingredient (g)	Solid fats (g)
Butter, salted	40	32.5	32.5
Honey	60	-	
Total			

* Amounts rounded and the total may not add to 100

The solid fats present in honey butter come from the butter.

Chapter 11

Alcoholic Drinks

Alcoholic Drinks include all types of beers; all types of wines; distilled spirits such as brandy, gin, rum, vodka, and whiskey; and cordials and liqueurs. Appendix 1 lists alcoholic drinks included in FPED.

Determination of Number of Drinks

In general, 12 fluid ounces of beer, 5 fluid ounces of wine, or 1.5 fluid ounces of 80proof distilled spirit is considered as one drink and contains about 14 grams of ethanol. Based on this, in FPED, one drink was defined as the amount of alcoholic beverage containing 0.6 fluid ounce or 14 grams of ethanol.

FNDDS foods that have alcoholic beverages used in cooking are considered not having any residual ethanol and therefore, do not contain alcoholic drinks equivalents. If alcoholic beverages are added to a food after cooking, credit is given for alcoholic drinks equivalents (e.g., no-bake rum ball cookie, zabaglione). The following examples describe the computation of the number of alcoholic drinks present in 100 grams of beverages.

Examples:

1. Table Wine, red

Table wine containing 10.6 grams of ethanol per 100 grams Number of alcoholic drinks per 100 grams

$$
=10.6 / 14=0.76
$$

2. Whiskey

Whiskey containing 33.4 grams of ethanol per 100 grams
Number of alcoholic drinks per 100 grams

$$
=33.4 / 14=2.39
$$

3. Martini

Martini containing 29 grams of ethanol per 100 grams
Number of alcoholic drinks per 100 grams $=29 / 14=2.07$

4. Zabaglione

Zabaglione containing 7.6 grams of ethanol per 100 grams Number of alcoholic drinks per 100 grams
$=7.6 / 14=0.54$

5. Alcoholic fruit punch

Alcoholic fruit punch containing 8.3 grams of ethanol per 100 grams
Number of alcoholic drinks per 100 grams $=8.3 / 14=\mathbf{0 . 5 9}$

Multi-ingredient Foods Containing Alcohol (Ethanol)

Alcohol (ethanol) present in beverages such as cocktails and alcoholic beverages that are added to multi-ingredient foods after cooking are assigned to the Alcoholic Drinks component.

References

1. U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2015. 2015-2020 Dietary Guidelines for Americans, $8^{\text {th }}$ Edition. Published by the U.S. Department of Health and Human Services and U.S. Department of Agriculture, Washington, D.C. December 2015. Available at:
https://health.gov/dietaryguidelines/2015/resources/2015-
2020_Dietary_Guidelines.pdf. Accessed date August 18, 2020.
2. U.S. Department of Agriculture, Washington, D.C. ChooseMyPlate Web Site. Available at: https://www.choosemyplate.gov/dietary-guidelines. Accessed date August 18, 2020.
3. U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Surveys Research Group, Beltsville, Maryland, and U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics (Hyattsville, Maryland). What We Eat in America, NHANES 2017-2018. Dietary Data. Available at: https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?Component=Dietary\&CycleBeginYear =2017. Accessed date August 18, 2020.
4. U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Surveys Research Group. Beltsville, Maryland. Food and Nutrient Database for Dietary Studies 2017-2018. Available at:
http://www.ars.usda.gov/nea/bhnrc/fsrg. August 18, 2020.
5. Bowman SA, Friday JE, Moshfegh A. (2008). MyPyramid Equivalents Database, 2.0 for USDA Survey Foods, 2003-2004 [Online] Food Surveys Research Group. Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland. Available at: http://www.ars.usda.gov/nea/bhnrc/fsrg. Accessed date August 18, 2020.
6. Bowman SA, Martin CL, Carlson JL, Clemens JC, Lin B-H, and Moshfegh AJ. 2013. Food Intakes Converted to Retail Commodities Databases: 2003-08: Methodology and User Guide. U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, and U.S. Department of Agriculture, Economic Research Service, Washington, D.C. Available at: http://www.ars.usda.gov/nea/bhnrc/fsrg. Accessed date August 18, 2020.
7. U.S. Department of Agriculture, Center for Nutrition Policy and Promotion and U.S. Department of Health and Human Services, National Cancer Institute (2018). Developing the Healthy Eating Index-2015. Available at: https://epi.grants.cancer.gov/hei/developing.html. Accessed date August 18, 2020.
8. Carlson A, Lino M, Juan W-Y, Hanson K, and Basiotis PP. 2007. Thrifty Food Plan, 2006. (CNPP-19). U.S. Department of Agriculture, Center for Nutrition Policy and Promotion. Available at: http://www.cnpp.usda.gov/sites/default/files/usda_food_plans_cost_of_food/TFP2 006Report.pdf. Accessed date August 30, 2018.
9. U.S. Department of Health and Human Services. Washington, D.C. Healthy People 2030 Web site. Available at: https://health.gov/healthypeople/objectives-and-data/browse-objectives/nutrition-and-healthy-eating. Accessed date August 30, 2018.
10. U.S. National Institutes of Health, National Cancer Institute. Bethesda, Maryland. National Cancer Institute, Dietary Assessment Methods Web Site. Available at: https://epi.grants.cancer.gov/dietary-assessment/resources.html. Accessed date August 18, 2020.
11. Bowman S, Friday J, Clemens J, Moshfegh A. 2011. Estimation of Grain Equivalents in Foods: A Critical Review of Methodology. 36 ${ }^{\text {th }}$ National Nutrient Databank Conference, April 8, 2011, Bethesda, MD.
12. U.S. Food and Drug Administration. FDA Food Code 2009: Annex 6- Food Processing Criteria. Smoking and Curing: Definitions. Available at: https://wayback.archiveit.org/7993/20170406184713/https://www.fda.gov/Food/GuidanceRegulation/RetailFoodProtecti on/FoodCode/ucm188201.htm. Accessed date August 18, 2020.
13. Marcoe K, Juan W, Yamini S, Carlson A, Britten P. 2006. Development of Food Group Composites and Nutrient Profiles for the MyPyramid Food Guidance System. Journal of Nutrition Education and Behavior. 38:S93-S107.

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis

Fruit Components (cup eq.)	Foods
Total Fruit (F_TOTAL)	Includes the sum of all foods in the Fruit components listed below:
Citrus, Melons, and Berries (F_CITMLB)	Blackberries Kumquats Blueberries Lemons Boysenberries Limes Calamondin Loganberries Cantaloupe Mandarins Casaba Mulberries Cranberries Oranges Dewberries Raspberries Grapefruit Strawberries Honeydew Tangelos Huckleberries Tangerines Juneberries Watermelon Kiwi fruit Youngberries
Other Fruits (F_OTHER)	Apples Passion fruits Apricots Peaches Bananas Pears Cherries Persimmons Currants Pineapple Dates Plums (Ciruelas) Figs Pomegranates Grapes Prunes Guava Raisins Lychees Rhubarb Mangoes Soursop (Guanabana) Nectarines Starfruit (Carambola) Papayas Tamarind
Fruit Juice (F_JUICE)	Citrus and non-citrus fruit juices

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis (Continued)

Vegetables Components (cup eq.)	Foods
Total Vegetables (V_TOTAL)	Includes the sum of all foods in the Vegetables components listed below except Beans and Peas (Legumes):
Dark Green Vegetables (V_DRKGR)	
Total Red and Orange Vegetables (V_REDOR _TOTAL)	Includes the sum of all foods in the Tomatoes and Other Red and Orange Vegetables components listed below:
Tomatoes (V_REDOR _TOMATO)	Tomatoes (canned, Tomato paste cooked, raw, stewed) Tomato puree Tomatoes, dried Tomato juice

Vegetables Components (cont.) (cup eq.)		Foods
Other Red and Orange Vegetables (V_REDOR _OTHER)	Calabaza (Spanish pumpkin) Carrots Carrot juice Red colored bell, and nonbell	Pimiento Pumpkin Squash (most winter varieties)
	peppers potatoes	

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis (Continued)

Vegetables Components (cont.) (cup eq.)		ods
Other Vegetables (V_OTHER)	Alfalfa sprouts Artichoke	Jute
		Kohlrabi
	Asparagus	Leeks
	Avocado Bamboo shoots	Lettuce (varieties not
		in dark green
	Beans (green, yellow, snap, string)	category)
		Mushrooms
		Okra
	Bean sprouts Beets	Olives
		Onions
	Bitter melon (bitter gourd,	Palm hearts
		Peas, podded
	balsam pear) Broccoflower	Peppers, bell and
		nonbell peppers
	Brussels sprouts	(not red or orange
	Cabbage	in color)
	Cactus (Nopales)	Pokeberry shoots
	Capers	Radicchio
	Cauliflower	Radish
	Celeriac	Rutabaga
	Celery	Scallions
	Chayote(Christophine)	Seaweed
		Snow peas
	Chinese cabbage (Pei-tsai)	Sprouted beans (e.g. mung, soybean)
	Chinese okra (Luffa)	Squash (green, sequin, spaghetti,
	Chives yellow, zucchini,	
	Cucumber most summer	
	Eggplant	varieties)
		Tomatillos
	Flowers, edible	Tomatoes, green
	Garlic	Turnips
	Ginger root Horseradish pods	Winter melon (Wax
		gourd)

Vegetables Components (cont.) (cup eq.)	Foods	
Beans, Peas, and Lentils (Legumes) (V_LEGUMES)	Includes all mature beans, peas, and lentils (legumes) such as:	
	Black beans	Kidney beans
	Blackeye peas	Lentils
	Brown beans	Mature lima beans
	Bayo beans	Mung beans
	Calico beans	Navy beans
	Carob	Pink beans
	Chickpeas	Pinto beans
	(Garbanzo	Red Mexican beans
	beans)	Soybeans* (raw)
	Cowpeas	Split peas
	Fava beans	White beans

*Products such as edamame made from raw soybeans are placed under Legumes.

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis (Continued)

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis (Continued)

Protein Foods Components (oz. eq.)	Foods
Total Protein Foods (PF_TOTAL)	Includes the sum of all foods in the Protein Foods components listed below except Beans and Peas:
Total Meat, Poultry, and Seafood (PF_MPS_TOTAL)	Includes the sum of all foods in the Meat, Cured Meat, Organ Meat, Poultry, Seafood High in $n-3$, and Seafood Low in $n-3$ components listed below:
Meat (PF_MEAT)	Armadillo Lamb Bacon (not cured) Moose Bear Opossum Beaver Oxtail Beef Pork Bison Rabbit Caribou Raccoon Game meat Squirrel \quad (other) Veal Goat Venison Ground hog Wild pig Ham (not cured)

Protein Foods Components (cont.) (oz. eq.)	Foods	
Cured Meat (PF_CUREDMEAT)	Bacon Beef sausage Beef luncheon meat Blood sausage Bockwurst Bologna Bratwurst Braunschweiger Capicola Cervelat Chicken sticks Chicken luncheon meat Chicken or turkey loaf Chorizo Cold cut deli mea Corned beef Chipped beef Dutch brand loaf Frankfurters Ham (cured, smoked, deli, deviled, loaf, luncheon meat, minced) Head cheese Honey loaf	Hotdogs Italian sausage Jerky (all meat types) Kielbasa Knockwurst Liverwurst Meat spreads Meat sticks Mettwurst Mortadella Pastrami Pepperoni Pepper loaf Polish sausage Pork luncheon meat Pork sausage Potted meats Salami Sandwich loaf Souse Thuringer Turkey luncheon meat Turkey sausage Turkey, smoked Turkey sticks Veal loaf Vienna sausage
Organ Meat (PF_ORGAN)	Brain Chitterlings Giblets Gizzard Heart Kidney	Liver Stomach Sweetbreads Thymus Tongue Tripe

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis (Continued)

Protein Foods Components (cont.) (oz. eq.)	Foods	
Poultry (PF_POULT)	Chicken Cornish game hen Dove Duck Goose	Ostrich Pheasant Quail Turkey
Seafood High in n - 3 Fatty Acids (PF_SEAFD_HI)	Anchovy Barracuda Caviar (Roe) Cisco Herring Mackerel Pompano Ray Salmon	Sardine Sea bass Shad Shark Swordfish Trout Tuna (albacore \& bluefin)
Seafood Low in n - 3 Fatty Acids (PF_SEAFD_LOW)	Abalone Carp Catfish Clams Cod Crab Crayfish Croaker Eel Flounder Frog legs Haddock Halibut Lobster Mullet Mussels Ocean perch Octopus Oyster	Perch Pike Pollock Porgy Scallop Scup Shrimp Snail Snapper Sole Squid Sturgeon Tilapia Tuna (excludes albacore \& bluefin) Turtle Whitefish Whiting

Protein Foods Components (cont.) (oz. eq.)	Foods
Eggs (PF_EGGS)	Eggs, whole Egg white (chicken, duck, Egg yolk goose, quail, Egg substitute and other birds) Egg, dried
Soy Products (PF_SOY)	Miso Soybean protein Natto isolate and Soybean curd or concentrate tofu Soy milk (soymilk), Soybean flour not calcium fortified Soybean meal Soy nuts
Nuts and Seeds (PF_NUTSDS)	Almonds Peanut flour Almond butter Pecans Almond paste Pine nuts Brazil nuts Pistachios Cashew Pumpkin seeds Cashew butter Squash seeds Chestnuts Sesame butter Flax seeds (tahini) Hazelnuts Sesame seeds Macadamia nuts Sesame paste Peanuts Sunflower seeds Peanut butter Walnuts
Beans, Peas, and Lentils (Legumes) (PF_LEGUMES)	See under Vegetables, Beans and Peas component for the list of foods

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis (Continued)

Dairy Components (cup eq.)	Foods
Total Dairy (D_TOTAL)	Includes the sum of all foods in the Dairy components listed below, plus the following: Whey
Milk (D_MILK)	Includes fluid milk and calcium added soy milk of all fat-types such as:
Yogurt (D_YOGURT)	Includes yogurt of all fat-types and yogurt present in flavored and frozen yogurt

Dairy Components (cont.) (cup eq.)	Foods	
Cheese (D_CHEESE)	Includes natural and processed cheeses of all fat-types such as:	
	American cheese Mexican cheese Blue cheese	blend
	Brick cheese	Monterey cheese
	Brie cheese	Mozzarella cheese
	Camembert	Muenster cheese
	cheese	Parmesan cheese
	Cheddar cheese	Pasteurized cheese
	Colby cheese	Port de salut cheese
	Colby Jack cheese	Provolone cheese
	Cottage cheese	Ricotta cheese
	Cream cheese, fat	Romano cheese
	free	Roquefort cheese
	Edam cheese	Swiss cheese
	Feta cheese	Queso anejo
	Fontina cheese	Queso asadero
	Goat cheese	Queso chihuahua
	Gouda cheese	Queso del pais,
	Gruyere cheese	blanco
	Limburger cheese	Queso fresco

Appendix 1: List of Foods Included in the Food Patterns Components, Units, and FPID/FPED 2017-2018 Variable Names in Parenthesis (Continued)

Oils Component (grams)	Foods
Oils (OILS)	Includes fats naturally present in seafood, nuts, seeds, olives, avocados, and the following:

Added Sugars Component (tsp. eq.)	Foods	
Added Sugars (ADD_SUGARS)	Brown Sugar Cane syrup Confectioners' sugar Corn Syrups Corn syrup solids Dextrose Fructose Fruit juice concentrates (undiluted)	Fruit syrups Granulated sugar Honey Maple syrup Molasses Pancake syrups Powdered sugar Raw sugar Sorghum syrups White sugar (cane and beet)

Solid Fats Component (grams)	Foods	
Solid Fats (SOLD_FATS)	Includes fats naturally present in milk products, meat, poultry, eggs and the following:	
	Butter	Fully or partially
	Cocoa butter	hydrogenated oils
	Cocoa fat	Ghee
	Coconut oil	Lard
	Cream	Palm oil
	Cream substitute	Tallow
	Cream Cheese,	Shortening (animal
	regular and	and vegetable)
	low-fat	Sour cream

Alcoholic Drinks Component (no. of drinks)	Foods
Alcoholic Drinks (A_DRINKS)	Includes: Beer Wine
	Distilled spirits Alcohol (ethanol) present in cocktails and other alcoholic beverages Alcohol (ethanol) added to foods after cooking

Appendix 2: Connecting MPED 2.0 and FPED 2017-2018 Variables

MPED 2.0 Variables	FPED Variables	Foods in FPED Variables (units)
F_TOTAL	F_TOTAL	Total intact fruits (whole or cut) and fruit juices (cup eq.)
F_CITMLB ${ }^{1}$	F_CITMLB	Intact fruits (whole or cut) of citrus, melons, and berries (cup eq.)
F_OTHER ${ }^{1}$	F_OTHER	Intact fruits (whole or cut); excluding citrus, melons, and berries (cup eq.)
--	F_JUICE ${ }^{2}$	Fruit juices, citrus and non-citrus (cup eq.)
V_TOTAL	V_TOTAL	Total dark green, red and orange, starchy, and other vegetables; excludes legumes (cup eq.)
V_DRKGR	V_DRKGR	Dark green vegetables (cup eq.)
--	V_REDOR_TOTAL ${ }^{2}$	Total red and orange vegetables (tomatoes and tomato products + other red and orange vegetables) (cup eq.)
V_TOMATO	V_REDOR_TOMATO	Tomatoes and tomato products (cup eq.)
V_ORANGE	V_REDOR_OTHER	Other red and orange vegetables, excluding tomatoes and tomato products (cup eq.)
--	V_STARCHY_TOTAL ${ }^{2}$	Total starchy vegetables (white potatoes + other starchy vegetables) (cup eq.)
V_POTATO	V_STARCHY_POTATO	White potatoes (cup eq.)
V_STARCY	V_STARCHY_OTHER	Other starchy vegetables, excluding white potatoes (cup eq.)
V_OTHER	V_OTHER	Other vegetables not in the vegetable components listed above (cup eq.)
LEGUMES	V_LEGUMES	Beans, peas, and lentils (legumes) computed as vegetables (cup eq.)
G_TOTAL	G_TOTAL	Total whole and refined grains (oz. eq.)
G_WHL	G_WHOLE	Grains defined as whole grains and contain the entire grain kernel - the bran, germ, and endosperm (oz. eq.)
G_NWHL	G_REFINED	Refined grains that do not contain all of the components of the entire grain kernel (oz. eq.)
--	PF_TOTAL ${ }^{2}$	Total meat, poultry, organ meat, cured meat, seafood, eggs, soy, and nuts and seeds; excludes legumes (oz. eq.)
M_MPF	PF_MPS_TOTAL	Total of meat, poultry, seafood, organ meat, and cured meat (oz. eq.)
M_MEAT ${ }^{3}$	PF_MEAT	Beef, veal, pork, lamb, and game meat; excludes organ meat and cured meat (oz. eq.)
M_FRANK ${ }^{3}$	PF_CUREDMEAT	Frankfurters, sausages, corned beef, cured ham and luncheon meat that are made from beef, pork, or poultry (oz. eq.)
M_ORGAN	PF_ORGAN	Organ meat from beef, veal, pork, lamb, game, and poultry (oz. eq.)
M_POULT	PF_POULT	Chicken, turkey, Cornish hens, duck, goose, quail, and pheasant (game birds); excludes organ meat and cured meat (oz. eq.)

Appendix 2: Connecting MPED 2.0 and FPED 2017-2018 Variables (Continued)

MPED 2.0 Variables	FPED Variables	Foods in FPED Variables (units)
M_FISH_HI	PF_SEAFD_HI	Seafood (finfish, shellfish, and other seafood) high in $n-3$ fatty acids (oz. eq.)
M_FISH_LO	PF_SEAFD_LOW	Seafood (finfish, shellfish, and other seafood) low in n-3 fatty acids (oz. eq.)
M_EGG	PF_EGGS	Eggs (chicken, duck, goose, quail) and egg substitutes (oz. eq.)
M_SOY ${ }^{4}$	PF_SOY	Soy products, excluding calcium fortified soy milk (soymilk) and raw soybeans (oz. eq.)
M_NUTSD	PF_NUTSDS	Peanuts, tree nuts, and seeds; excludes coconut (oz. eq.)
--	PF_LEGUMES ${ }^{2}$	Beans and Peas (legumes) computed as protein foods (oz. eq.)
D_TOTAL	D_TOTAL	Total milk, yogurt, cheese, and whey. For some foods, the total dairy values could be higher than the sum of D_MILK, D_YOGURT, and D_CHEESE because miscellaneous dairy component composed of whey is not included in FPED as a separate variable. (cup eq.)
D_MILK ${ }^{4}$	D_MILK	Fluid milk, buttermilk, evaporated milk, dry milk, and calcium fortified soy milk (soymilk) (cup eq.)
D_YOGURT	D_YOGURT	Yogurt (cup eq.)
D_CHEESE	D_CHEESE	Cheeses (cup eq.)
DISCFAT_OIL	OILS	Fats naturally present in nuts, seeds, and seafood; all unhydrogenated vegetable oils, except palm oil, palm kernel oil, and coconut oils; the fat present in avocado and olives above the allowable amount; 50% of the fat present in stick and tub margarines and margarine spreads (grams)
DISCFAT_SOL	SOLID_FATS	Fats naturally present in meat, poultry, eggs, and dairy (lard, tallow, and butter); fully or partially hydrogenated oils; shortening; palm oil; palm kernel oil; coconut oils; fats naturally present in coconut meat and cocoa butter; and 50% of the fat present in stick and tub margarines and margarine spreads (grams)
ADD_SUG	ADD_SUGARS	Foods defined as added sugars (tsp. eq.)
A_BEV	A_DRINKS	Alcoholic beverages and alcohol (ethanol) added to foods after cooking (no. of drinks)

${ }^{1}$ Fruit juices were included in the individual fruit subgroups in MPED 2.0. In FPED, they are in the Fruit Juice group (F_JUICE).
${ }^{2}$ New variables, not in MPED 2.0
${ }^{3}$ Cured/smoked meat were included in the M_MEAT subgroup in MPED 2.0. In FPED, it is a separate group (PF_CUREDMEAT)
${ }^{4}$ Calcium fortified soy milk was included in the M_SOY subgroup in MPED 2.0 and is placed in the Dairy group in FPED

Appendix 3: Food Patterns Equivalents Ingredients Database (FPID) 2017-2018 Variables

FPID Variables	Description (units)
CODE	Food code
DESCRIPTION	Food description
F_TOTAL	Total intact fruits (whole or cut) and fruit juices (cup eq.)
F_CITMLB	Intact fruits (whole or cut) of citrus, melons, and berries (cup eq.)
F_OTHER	Intact fruits (whole or cut); excluding citrus, melons, and berries (cup eq.)
F_JUICE	Fruit juices, citrus and non-citrus (cup eq.)
V_TOTAL	Total dark green, red and orange, starchy, and other vegetables; excludes legumes (cup eq.)
V_DRKGR	Dark green vegetables (cup eq.)
V_REDOR_TOTAL	Total red and orange vegetables (tomatoes and tomato products + other red and orange vegetables) (cup eq.)
V_REDOR_TOMATO	Tomatoes and tomato products (cup eq.)
V_REDOR_OTHER	Other red and orange vegetables, excluding tomatoes and tomato products (cup eq.)
V_STARCHY_TOTAL	Total starchy vegetables (white potatoes + other starchy vegetables) (cup eq.)
V_STARCHY_POTATO	White potatoes (cup eq.)
V_STARCHY_OTHER	Other starchy vegetables, excluding white potatoes (cup eq.)

Appendix 3: Food Patterns Equivalents Ingredients Database (FPID) 2017-2018 Variables (Continued)

FPID Variables	Description (units)
V_OTHER	Other vegetables not in the vegetable components listed above (cup eq.)
V_LEGUMES	Beans, peas, and lentils (legumes) computed as vegetables (cup eq.)
G_TOTAL	Total whole and refined grains (oz. eq.)
G_WHOLE	Grains defined as whole grains and contain the entire grain kernel - the bran, germ, and endosperm (oz. eq.)
G_REFINED	Refined grains that do not contain all of the components of the entire grain kernel (oz. eq.)
PF_TOTAL	Total meat, poultry, organ meat, cured meat, seafood, eggs, soy, and nuts and seeds; excludes legumes (oz. eq.)
PF_MPS_TOTAL	Total of meat, poultry, seafood, organ meat, and cured meat (oz. eq.)
PF_MEAT	Beef, veal, pork, lamb, and game meat; excludes organ meat and cured meat (oz. eq.)
PF_CUREDMEAT	Frankfurters, sausages, corned beef, cured ham and luncheon meat that are made from beef, pork, or poultry (oz. eq.)
PF_ORGAN	Organ meat from beef, veal, pork, lamb, game, and poultry (oz. eq.)
PF_POULT	Chicken, turkey, Cornish hens, duck, goose, quail, and pheasant (game birds); excludes organ meat and cured meat (oz. eq.)

Appendix 3: Food Patterns Equivalents Ingredients Database (FPID) 2017-2018 Variables (Continued)

FPID Variables	Description (units)
PF_SEAFD_HI	Seafood (finfish, shellfish, and other seafood) high in $n-3$ fatty acids (oz. eq.)
PF_SEAFD_LOW	Seafood (finfish, shellfish, and other seafood) low in n-3 fatty acids (oz. eq.)
PF_EGGS	Eggs (chicken, duck, goose, quail) and egg substitutes (oz. eq.)
PF_SOY	Soy products, excluding calcium fortified soy milk (soymilk) and raw/mature soybean products (oz. eq.)
PF_NUTSDS	Peanuts, tree nuts, and seeds; excludes coconut (oz. eq.)
PF_LEGUMES	Beans and Peas (legumes) computed as protein foods (oz. eq.)
D_TOTAL	Total milk, yogurt, cheese, and whey. For some foods, the total dairy values could be higher than the sum of D_MILK, D_YOGURT, and D_CHEESE because miscellaneous dairy component composed of whey is not included in FPED as a separate variable (cup eq.)
D_MILK	Fluid milk, buttermilk, evaporated milk, dry milk, and calcium fortified soy milk (soymilk) (cup eq.)
D_YOGURT	Yogurt (cup eq.)
D_CHEESE	Cheeses (cup eq.)

Appendix 3: Food Patterns Equivalents Ingredients Database (FPID) 2017-2018 Variables (Continued)

FPID Variables	Description (units)
OILS	Fats naturally present in nuts, seeds, and seafood; all unhydrogenated vegetable oils, except palm oil, palm kernel oil, and coconut oils; the fat present in avocado and olives above the allowable amount; 50% of the fat present in stick and tub margarines and margarine spreads (grams)
SOLID_FATS	Fats naturally present in meat, poultry, eggs, and dairy (lard, tallow, and butter); fully or partially hydrogenated oils; shortening; palm oil; palm kernel oil; coconut oils; fats naturally present in coconut meat and cocoa butter; and 50\% of the fat present in stick and tub margarines and margarine spreads (grams)
ADD_SUGARS	Foods defined as added sugars (tsp. eq.)
A_DRINKS	Alcoholic beverages and alcohol (ethanol) added to foods after cooking (no. of drinks)

Appendix 4: Food Patterns Equivalents Database (FPED) 2017-2018 Variables

FPED Variables	Description (units)
FOODCODE	Food code
DESCRIPTION	Food description
F_TOTAL	Total intact fruits (whole or cut) and fruit juices (cup eq.)
F_CITMLB	Intact fruits (whole or cut) of citrus, melons, and berries (cup eq.)
F_OTHER	Fruit juices, citrus and non-citrus (cup eq.)
F_JUICE	Total dark green, red and orange, starchy, and other vegetables; excludes legumes (cup eq.)
V_TOTAL	Dark green vegetables (cup eq.)
V_DRKGR	Total red and orange vegetables (tomatoes and tomato products + other red and orange vegetables) (cup eq.)
V_REDOR_TOTAL	Tomatoes and tomato products (cup eq.)
V_REDOR_TOMATO	Other red and orange vegetables, excluding tomatoes and tomato products (cup eq.)
V_REDOR_OTHER	Total starchy vegetables (white potatoes + other starchy vegetables) (cup eq.)
V_STARCHY_TOTAL	berries (cup eq.)
V_STARCHY_POTATO	White potatoes (cup eq.)
V_STARCHY_OTHER	Other starchy vegetables, excluding white potatoes (cup eq.)

Appendix 4: Food Patterns Equivalents Database (FPED) 2017-2018 Variables (Continued)

FPED Variables	Description (units)
V_OTHER	Other vegetables not in the vegetable components listed above (cup eq.)
V_LEGUMES	Beans, peas, and lentils (legumes) computed as vegetables (cup eq.)
G_TOTAL	Total whole and refined grains (oz. eq.)
G_WHOLE	Grains defined as whole grains and contain the entire grain kernel - the bran, germ, and endosperm (oz. eq.)
G_REFINED	Refined grains that do not contain all of the components of the entire grain kernel (oz. eq.)
PF_TOTAL	Total meat, poultry, organ meat, cured meat, seafood, eggs, soy, and nuts and seeds; excludes legumes (oz. eq.)
PF_MPS_TOTAL	Total of meat, poultry, seafood, organ meat, and cured meat (oz. eq.)
PF_MEAT	Beef, veal, pork, lamb, and game meat; excludes organ meat and cured meat (oz. eq.)
PF_CUREDMEAT	Frankfurters, sausages, corned beef, cured ham and luncheon meat that are made from beef, pork, or poultry (oz. eq.)
PF_ORGAN	Organ meat from beef, veal, pork, lamb, game, and poultry (oz. eq.)
PF_POULT	Chicken, turkey, Cornish hens, duck, goose, quail, and pheasant (game birds); excludes organ meat and cured meat (oz. eq.)
PF_SEAFD_HI	Seafood (finfish, shellfish, and other seafood) high in $n-3$ fatty acids (oz. eq.)

Appendix 4: Food Patterns Equivalents Database (FPED) 2017-2018 Variables (Continued)

FPED Variables	Description (units)
PF_SEAFD_LOW	Seafood (finfish, shellfish, and other seafood) low in n-3 fatty acids (oz. eq.)
PF_EGGS	Eggs (chicken, duck, goose, quail) and egg substitutes (oz. eq.)
PF_SOY	Soy products, excluding calcium fortified soy milk (soymilk) and raw / mature soybean products (oz. eq.)
PF_NUTSDS	Peanuts, tree nuts, and seeds; excludes coconut (oz. eq.)
PF_LEGUMES	Beans and Peas (legumes) computed as protein foods (oz. eq.)
D_TOTAL	Total milk, yogurt, cheese, and whey. For some foods, the total dairy values could be higher than the sum of D_MILK, D_YOGURT, and D_CHEESE because miscellaneous dairy component composed of whey is not included in FPED as a separate variable. (cup eq.)
D_MILK	Fluid milk, buttermilk, evaporated milk, dry milk, and calcium fortified soy milk (soymilk) (cup eq.)
D_YOGURT	Yogurt (cup eq.)
D_CHEESE	Cheeses (cup eq.)
OILS	Fats naturally present in nuts, seeds, and seafood; all unhydrogenated vegetable oils, except palm oil, palm kernel oil, and coconut oils; the fat present in avocado and olives above the allowable amount; 50\% of the fat present in stick and tub margarines and margarine spreads (grams)

Appendix 4: Food Patterns Equivalents Database (FPED) 2017-2018 Variables (Continued)

FPED Variables	Description (units)
SOLID_FATS	Fats naturally present in meat, poultry, eggs, and dairy (lard, tallow, and butter); fully or partially hydrogenated oils; shortening; palm oil; palm kernel oil; coconut oils; fats naturally present in coconut meat and cocoa butter; and 50\% of the fat present in stick and tub margarines and margarine spreads (grams)
ADD_SUGARS	Foods defined as added sugars (tsp. eq.)
A_DRINKS	Alcoholic beverages and alcohol (ethanol) added to foods after cooking (no. of drinks)

Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020

Day 1 fped_dr1iff_1720.sas7bdat	Day 2 fped_dr2iff_1720.sas7bdat	Description (units)
183910	149495	Number of observations
SEQN	SEQN	Respondent sequence number
RIAGENDR	RIAGENDR	Gender
RIDAGEYR	RIDAGEYR	Age in years at screening
RIDRETH3	SIDRETH3	Race/Hispanic origin w/Non-Hispanic Asian - Recode
SDMVPSU	SDMVSTRA	Masked variance pseudo-PSU
SDMVSTRA	ANPFMIN2	Annual family income value is missing; income in dollars not included in NHANES 2017-March 2020 data release.
ANDFMIN2	RTDFMPIR	Ratio of family income to poverty
INDFMPIR	WTDRD1PP	Dietary day one sample weight
WTDRD1PP	DR2DRSTZ	Dietary recall status
WTDR2DPP	DRABF	Breast-fed infant (either day)
DR1DRSTZ	DRABF	

Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1iff_1720.sas7bdat	Day 2 fped_dr2iff_1720.sas7bdat	Description (units)
DRDINT	DRDINT	Number of days of intake
DR1TNUMF	DR2TNUMF	Number of foods/beverages reported
DR1ILINE	DR2ILINE	Food/Individual component number
DR1IFDCD	DR2IFDCD	GrDA food code
DR1IGRMS	DESCRIPTION	Food description
DESCRIPTION	DR2I_F_TOTAL	Total intact fruits (whole or cut) and fruit juices (cup eq.)
DR1I_F_TOTAL	DR2I_F_OTHER	Intact fruits (whole or cut) of citrus, melons, and berries (cup eq.) (cup eq.)
DR1I_F_CITMLB	DR2I_F_JUICE	Fruit juices, citrus and non-citrus (cup eq.)
DR1I_F_OTHER		
DR1I_F_JUICE		

Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1iff_1720.sas7bdat	Day 2 fped_dr2iff_1720.sas7bdat	Description (units)
DR1I_V_TOTAL	DR2I_V_TOTAL	Total dark green, red and orange, starchy, and other vegetables; excludes legumes (cup eq.)
DR1I_V_DRKGR	DR2I_V_DRKGR	Dark green vegetables (cup eq.)
DR1I_V_REDOR_TOTAL	DR2I_V_REDOR_TOTAL	Total red and orange vegetables (tomatoes and tomato products + other red and orange vegetables) (cup eq.)
DR1I_V_REDOR_TOMATO	DR2I_V_REDOR_TOMATO	Tomatoes and tomato products (cup eq.) DR1I_V_REDOR_OTHER DR2I_V_REDOR_OTHER DR1I_V_STARCHY_TOTAL Drar red and orange vegetables, excluding tomatoes and tomato products (cup eq.)
DR1I_V_STARCHY_POTATO	DR2I_V_STARCHY_POTATO	White potatoes (cup eq.)
(cup eq.)		

Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1iff_1720.sas7bdat	Day 2 fped_dr2iff_1720.sas7bdat	Description (units)
DR1I_G_TOTAL	DR2I_G_TOTAL	Total whole and refined grains (oz. eq.)
DR1I_G_WHOLE	DR2I_G_WHOLE	Grains defined as whole grains and contain the entire grain kernel - the bran, germ, and endosperm (oz. eq.)
DR1I_G_REFINED	DR2I_PF_TOTAL	Refined grains that do not contain all of the components of the entire grain kernel (oz. eq.)
DR1I_PF_TOTAL	Total meat, poultry, organ meat, cured meat, seafood, eggs, soy, and nuts and seeds; excludes legumes (oz. eq.)	
DR1I_PF_MPS_TOTAL	DR2I_PF_MPS_MEAT	Total of meat, poultry, seafood, organ meat, and cured meat (oz. eq.)
DR1I_PF_MEAT	Beef, veal, pork, lamb, and game meat; excludes organ meat and cured meat (oz. eq.)	
DR1I_PF_CUREDMEAT	DR2I_PF_CUREDMEAT	Frankfurters, sausages, corned beef, cured ham and luncheon meat that are made from beef, pork, or poultry (oz. eq.)
DR1I_PF_ORGAN	DR2I_PF_ORGAN	Organ meat from beef, veal, pork, lamb, game, and poultry (oz. eq.)
DR1I_PF_POULT	DR2I_PF_POULT	Chicken, turkey, Cornish hens, duck, goose, quail, and pheasant (game birds); excludes organ meat and cured meat (oz. eq.)

Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1iff_1720.sas7bdat	Day 2 fped_dr2iff_1720.sas7bdat	Description (units)
DR1I_PF_SEAFD_HI	DR2I_PF_SEAFD_HI	Seafood (finfish, shellfish, and other seafood) high in n-3 fatty acids (oz. eq.)
DR1I_PF_SEAFD_LOW	DR2I_PF_SEAFD_LOW	Seafood (finfish, shellfish, and other seafood) low in n-3 fatty acids (oz. eq.)
DR1I_PF_EGGS	DR2I_PF_EGGS	Eggs (chicken, duck, goose, quail) and egg substitutes (oz. eq.)
DR1I_PF_SOY	DR2I_PF_SOY	Soy products, excluding calcium fortified soy milk (soymilk) and raw soybeans products (oz. eq.)
DR1I_PF_NUTSDS	DR2I_PF_LEGUMES	Peanuts, tree nuts, and seeds; excludes coconut (oz. eq.)
DR1I_PF_LEGUMES	DR2I_D_TOTAL	Total milk, yogurt, cheese, and whey. For some foods, the total dairy values could be higher than the sum of D_MILK, D_YOGURT, and D_CHEESE because miscellaneous dairy component composed of whey is not included in FPED as a separate variable. (cup eq.)
DR1I_D_TOTAL	DR2I_D_MILK	Fluid milk, buttermilk, evaporated milk, dry milk, and calcium fortified soy milk (soymilk) (cup eq.)
DR1I_D_MILK		

Appendix 5: Food Patterns Equivalents Intakes per Food per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1iff_1720.sas7bdat	Day 2 fped_dr2iff_1720.sas7bdat	Description (units)
DR1I_D_YOGURT	DR2I_D_YOGURT	Yogurt (cup eq.)
DR1I_D_CHEESE	DR2I_D_CHEESE	Cheeses (cup eq.) DR1I_OILSDR2I_OILS Fats naturally present in nuts, seeds, and seafood; all unhydrogenated vegetable oils, except palm oil, palm kernel oil, and coconut oils; the fat present in avocado and olives above the allowable amount; 50\% of the fat present in stick and tub margarines and margarine spreads (grams)
DR1I_SOLID_FATS	Fats naturally present in meat, poultry, eggs, and dairy (lard, tallow, and butter); fully or partially hydrogenated oils; shortening; palm oil; palm kernel oil; coconut oils; fats naturally present in coconut meat and cocoa butter; and 50\% of the fat present in stick and tub margarines and margarine spreads (grams)	
DR1I_ADD_SUGARS	DR2I_ADD_SUGARS	Foods defined as added sugars (tsp. eq.)
DR1I_A_DRINKS	DR2I_A_DRINKS	Alcoholic beverages and alcohol (ethanol) added to foods after cooking (no. of drinks)

Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables 2017-March 2020

Day 1 fped_dr1tot_1720.sas7bdat	Day 2 fped_dr2tot_1720.sas7bdat	Description (units)
14300	14300	Number of observations
SEQN	SEQN	Respondent sequence number
RIAGENDR	RIAGENDR	Gender
RIDAGEYR	RIDAGEYR	Race/Hispanic origin w/non-Hispanic Asian
RIDRETH3	SDMVPSU	Masked variance pseudo-PSU
SDMVPSU	SDMVSTRA	Masked variance pseudo-stratum
SDMVSTRA	INDFMIN2	Annual family income value is missing; income in dollars not included in NHANES 2017-March 2020 data release.
INDFMIN2	INDFMPIR	Ratio of family income to poverty
INDFMPIR	WTDRD1PP	Dietary day one sample weight
WTDRD1PP	WTDR2DPP	Dietary two-day sample weight
WTDR2DPP	DR2DRSTZ	Dietary recall status
DR1DRSTZ		

Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1tot_1720.sas7bdat	Day 2 fped_dr2tot_1720.sas7bdat	Description (units)
DRABF	DRABF	Breast-fed infant (either day)
DRDINT	DRDINT	Number of days of intake
DR1TNUMF	DR2TNUMF	Number of foods/ beverages reported
DR1T_F_TOTAL	DR2T_F_TOTAL	Total intact fruits (whole or cut) and fruit juices (cup eq.)
DR1T_F_CITMLB	DR2T_F_OTHER	Intact fruits (whole or cut) of citrus, melons, and berries (cup eq.) (cup eq.)
DR1T_F_OTHER or cut); excluding citrus, melons, and berries		
DR1T_F_JUICE	DR2T_F_JUICE	Fruit juices, citrus and non-citrus (cup eq.)
DR1T_V_TOTAL	DR2T_V_TOTAL	Total dark green, red and orange, starchy, and other vegetables; excludes legumes (cup eq.)
DR1T_V_DRKGR	DR2T_V_DRKGR	Dark green vegetables (cup eq.)
DR1T_V_REDOR_TOTAL	DR2T_V_REDOR_TOTAL	Total red and orange vegetables (tomatoes and tomato products + other red and orange vegetables) (cup eq.)

Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1tot_1720.sas7bdat	Day 2 fped_dr2tot_1720.sas7bdat	Description (units)
DR1T_V_REDOR_TOMATO	DR2T_V_REDOR_TOMATO	Tomatoes and tomato products (cup eq.)
DR1T_V_REDOR_OTHER	DR2T_V_REDOR_OTHER	Other red and orange vegetables, excluding tomatoes and tomato products (cup eq.)
DR1T_V_STARCHY_TOTAL	DR2T_V_STARCHY_TOTAL	Total starchy vegetables (white potatoes + other starchy vegetables) (cup eq.)
DR1T_V_STARCHY_POTATO	DR2T_V_STARCHY_POTATO	White potatoes (cup eq.)
DR1T_V_STARCHY_OTHER	DR2T_V_STARCHY_OTHER	Other starchy vegetables, excluding white potatoes (cup eq.)
DR1T_V_OTHER	DR2T_V_OTHER	Other vegetables not in the vegetable components listed above (cup eq.)
DR1T_V_LEGUMES	DR2T_V_LEGUMES	Beans, peas, and lentils (legumes) computed as vegetables (cup eq.)
DR1T_G_TOTAL	DR2T_G_TOTAL	Total whole and refined grains (oz. eq.)
DR1T_G_WHOLE	DR2T_G_WHOLE	Grains defined as whole grains and contain the entire grain kernel- the bran, germ, and endosperm (oz. eq.)

Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1tot_1720.sas7bdat	Day 2 fped_dr2tot_1720.sas7bdat	Description (units)
DR1T_G_REFINED	DR2T_G_REFINED	Refined grains that do not contain all of the components of the entire grain kernel (oz. eq.)
DR1T_PF_TOTAL	DR2T_PF_TOTAL	Total meat, poultry, organ meat, cured meat, seafood, eggs, soy, and nuts and seeds; excludes legumes (oz. eq.)
DR1T_PF_MPS_TOTAL	DR2T_PF_MPS_TOTAL	Total of meat, poultry, seafood, organ meat, and cured meat (oz. eq.)
DR1T_PF_MEAT	DR2T_PF_CUREDMEAT	Frankfurters, sausages, corned beef, cured ham and luncheon meat cured meat (oz. eq.) that are made from beef, pork, or poultry (oz. eq.)
DR1T_PF_CUREDMEAT	DR2T_PF_ORGAN	Organ meat from beef, veal, pork, lamb, game, and poultry (oz. eq.)
DR1T_PF_ORGAN	DR2T_PF_POULT	Chicken, turkey, Cornish hens, duck, goose, quail, and pheasant (game birds); excludes organ meat and cured meat (oz. eq.)
DR1T_PF_POULT	DR2T_PF_SEAFD_HI	Seafood (finfish, shellfish, and other seafood) high in $n-3$ fatty acids (oz. eq.)
DR1T_PF_SEAFD_HI		

Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1tot_1720.sas7bdat	Day 2 fped_dr2tot_1720.sas7bdat	Description (units) DR1T_PF_SEAFD_LOW DR1T_PF_EGGS DR2T_PF_SEAFD_LOW DR1T_PF_SOY DR2T_PF_EGGS DR1T_PF_NUTSDS (oz. eq.)
DR1T_PF_LEGUMES	DR2T_PF_NUTSDS	Eggs (chicken, duck, goose, quail) and egg substitutes (oz. eq.)
DR1T_D_TOTAL	Soy products, excluding calcium fortified soy milk (soymilk) and raw soybeans products (oz. eq.)	
DR2T_D_TOTAL	Peanuts, tree nuts, and seeds; excludes coconut (oz. eq.)	
DR1T_D_MILK	Beans and Peas (legumes) computed as protein foods (oz. eq.)	
DR1T_D_YOGURT	Total milk, yogurt, cheese, and whey. For some foods, the total dairy values could be higher than the sum of D_MILK, D_YOGURT, and D_CHEESE because miscellaneous dairy component composed of whey is not included in FPED as a separate variable. (cup eq.)	
DR1T_D_CHEESE	DR2T_D_MILK	Fluid milk, buttermilk, evaporated milk, dry milk, and calcium fortified soy milk (soymilk) (cup eq.)

Appendix 6: Total Food Patterns Equivalents Intakes per Individual for Day 1 and Day 2 SAS Files: Number of Observations and Variables, 2017-March 2020 (Continued)

Day 1 fped_dr1tot_1720.sas7bdat	Day 2 fped_dr2tot_1720.sas7bdat	Description (units)
DR1T_OILS	DR2T_OILS	Fats naturally present in nuts, seeds, and seafood; all unhydrogenated vegetable oils, except palm oil, palm kernel oil, and coconut oils; the fat present in avocado and olives above the allowable amount; 50% of the fat present in stick and tub margarines and margarine spreads (grams)
DR1T_SOLID_FATS	DR2T_SOLID_FATS	Fats naturally present in meat, poultry, eggs, and dairy (lard, tallow, and butter); fully or partially hydrogenated oils; shortening; palm oil; palm kernel oil; coconut oils; fats naturally present in coconut meat and cocoa butter; and 50\% of the fat present in stick and tub margarines and margarine spreads (grams)
DR1T_ADD_SUGARS	DR2T_ADD_SUGARS	Foods defined as added sugars (tsp. eq.)
DR1T_A_DRINKS	DR2T_A_DRINKS	Alcoholic beverages and alcohol (ethanol) added to foods after cooking (no. of drinks)

```
Appendix 7: SAS Program for Calculating Mean Intakes of Food Patterns Equivalents for the
Thirty-Seven Components, 2017-March }202
```

```
SAS Program: MakeTables_1720.sas
Purpose: Sample SAS program to estimate mean intakes of USDA Food Patterns
    Equivalents for use with WWEIA, NHANES 2017-March 2020 and create
    tables
Data In: ...\FPED_DR1TOT_1720.sas7bdat
Output: ...\Table1.pdf by Gender and Age
    ...\Table2.pdf by Race/Ethnicity and Age
    ..\Table3.pdf by Family Income in Dollars and Age NOTE: Income in dollars not
    included in NHANES 2017-March 2020 data release.
    ..\Table4.pdf by Family Income as % of Poverty Level and Age
************************************************************************************/
```

```
**************************************************************************;
    MakeTables.sas ;
* ;
* This SAS® program estimates mean intakes, consumed per
* individual in the United States of USDA 2017-2018 Food ;
* Patterns Equivalents and creates the following tables ;
* in the same directory as this program: ;
* ;
* Table1.pdf by Gender and Age ;
* Table2.pdf by Race/Ethnicity and Age ;
* Fable3.pdf by Family Income (in Dollars) and Age; NOTE: Income in dollars not included in
    NHANES 2017-March }2020\mathrm{ data release.
* Table4.pdf by Family Income (% of Poverty Leve1) and Age ;
* Table4.pdf)
* The required input data set, FPED_DR1TOT_1720.sas7bdat, ;
* is assumed to exist in the same directory as this program. ;
* If not, be sure to modify the libname statement appropriately. ;
*
********************************************************************;
```

options nocenter nodate number orientation=1andscape $1 \mathrm{~s}=155 \mathrm{ps}=48$ missing = ' ';

* Create macro var, iPath, with directory of this program.;
\%1et iPath=\%sysfunc(tranwrd(\%sysget(SAS_EXECFILEPATH),
%sysget(SAS_EXECFILENAME),));
* Libname of folder where FPED_DR1TOT_1720 resides.;
libname Input "\&iPath.";

```
*****************************************************************************;
* ;
* Make data1 with stub variables for the groups. ;
* Day 1, 2 year and over, exclude breast-fed, reliable intakes. ;
* ;
*********************************************************************;
```

data data1;
set Input. FPED_DR1TOT_1720 (where $=(($ RIDAGEYR $>=2)$ and (DRABF ne 1) and DR1DRSTZ = 1));

```
a11 = 1;
sex = RIAGENDR;
if 2<= RIDAGEYR <= 5 then ag1 = 1;
else if 6 <= RIDAGEYR <= 11 then ag1 = 2;
else if 12 <= RIDAGEYR <= 19 then ag1 = 3;
else if 20<= RIDAGEYR <= 29 then ag1 = 4;
else if 30 <= RIDAGEYR <= 39 then ag1 = 5;
else if 40 <= RIDAGEYR <= 49 then ag1 = 6;
else if 50 <= RIDAGEYR <= 59 then ag1 = 7;
else if 60 <= RIDAGEYR <= 69 then ag1 = 8;
else if RIDAGEYR >= 70
then ag1 = 9;
if ( 2 <= RIDAGEYR <= 19) then ag2 = 10;
else if (RIDAGEYR >= 20)
if RIDRETH3 = 3 then rac = 1; * Non-Hisp white;
else if RIDRETH3 = 4 then rac = 2; * Non-Hisp Black;
else if RIDRETH3 = 6 then rac = 3; * Non-Hisp Asian;
else if RIDRETH3 in(1 2) then rac = 4; * Hispanic ;
else
rac = 5; * Other Race ;
```

NOTE: Income in dollars not included in NHANES 2017-March 2020 data release.

f		INDFMIN2 in(1:5 13)	en inc $=1$;	* Under \$20k
e7	if	INDFMIN2 in($6: 10)$	then inc $=2$;	* \$20-\$75k
e7s	if	INDFMIN2 in(14 15)	then inc $=3$;	* \$75k and over
e7s			Inc $=4 ;$	* Other
if		$0<=$ INDFMPIR <= 1.3	then pov = 1;	* Under 131\% pov;
els	if	1.3 < INDFMPIR <= 3.50	then pov = 2;	* 131-350\% pov
els	if	INDFMPIR > 3.50	then pov $=3$;	* Over 350\% pov
els			pov $=4$;	* Other

* Apply shortened 1abels, these will appear in table headings.;
labe 1 DR1T_G_TOTAL = "Total Grain";
labe1 DR1T_G_WHOLE = "whole Grains";
labe1 DR1T_G_REFINED = "Refined Grains";
labe1 DR1T_V_TOTAL = "Total Vegetables";
labe1 DR1T_V_DRKGR = "Dark Green";
labe1 DR1T_V_REDOR_OTHER = "Other Red Orange";
labe1 DR1T_V_STARCHY_TOTAL = "Total Starchy";
labe1 DR1T_V_STARCHY_POTATO = "Potatoes";
labe1 DR1T_V_STARCHY_OTHER = "Other Starchy";
labe1 DR1T_V_REDOR_TOTAL = "Total Red and Orange";
labe1 DR1T_V_REDOR_TOMATO = "Tomatoes";
labe1 DR1T_V_OTHER = "Other";
labe1 DR1T_F_TOTAL = "Total Fruit";
labe1 DR1T_F_CITMLB = "Citrus, Melons and Berries";
1abe1 DR1T_F_OTHER = "Other Fruit";
labe1 DR1T_F_JUICE = "Fruit Juice";
labe1 DR1T_D_TOTAL = "Total Dairy";
labe1 DR1T_D_MILK = "Fluid Milk";
labe1 DR1T_D_YOGURT = "Yogurt";
labe1 DR1T_D_CHEESE = "Cheese";

```
    1abe1 DR1T_PF_TOTAL
= "Total Protein";
    1abe1 DR1T_PF_MPS_TOTAL
= "Total Meat, Poultry, and Seafood";
1abe1 DR1T_PF_MEAT
= "Meat";
1abe1 DR1T_PF_ORGAN
1abe1 DR1T_PF_CUREDMEAT
1abe1 DR1T_PF_POULT
1abe1 DR1T_PF_SEAFD_HI
= "Organ";
= "Cured Meats";
= "Pou7try";
= "Seafood High n-3";
1abe1 DR1T_PF_SEAFD_LOW
= "Seafood Low n-3";
1abe1 DR1T_PF_EGGS
= "Eggs";
labe1 DR1T_PF_SOY
= "Soybean Products";
1abe1 DR1T_PF_NUTSDS
1abe1 DR1T_V_LEGUMES
= "Nuts and Seeds";
= "Legumes as Vegetable";
1abe1 DR1T_PF_LEGUMES
= "Legumes as Protein";
labe1 DR1T_OILS
= 'Oils";
labe1 DR1T_SOLID_FATS
= "Solid Fats";
1abe1 DR1T_ADD_SUGARS
= "Added Sugar";
1abe1 DR1T_A_DRINKS
= "Alcoholic Drinks";
run;
****************************************************************************
* ;
* Create formats for the group variables. ;
*********************************************************************;
proc format;
    value agef
        1 = " 2 - 5.............."
        2 = " 6 - 11............."
        3 = "12 - 19............."
        4 = "20 - 29.............."
        5 = "30 - 39............."
        6 = "40 - 49............."
        7 = "50 - 59.............."
        8 = "60 - 69............."
        9 = " 70 and over......"
        10 = " 2-19........."
        11 = " 20 and over..."
        12 = " 2 and over...";
    value sexf
        1 = "Males:"
        2 = "Females:"
        3 = "Males and females:";
    value racf
        1 = "Non-Hispanic white:"
        2 = "Non-Hispanic Black:"
        3 = "Non-Hispanic Asian:"
        = "Hispanic:";
```

 NOTE: Income in dollars not included in
 NHANES 2017-March 2020 data release.
 value incf
 \(\pm=\frac{" \$ 0-\$ 24,999: "}{}\)
 \(z=\frac{" \$ 25,000-\$ 74,999: " ~}{\text { Z }}\)
 \(3=" \$ 75,000\) and higher:"
 \(4=\) "All Individuals:";
    ```
    value povf
        1 = "Under 131% poverty:"
        2 = "131-350% poverty:"
        3 = "Over 350% poverty:"
    4 = "All Individuals:";
run;
```

```
********************************************************************;
* ;
* Generate weighted means and SE. ;
* ;
**********************************************************************;
```

ods listing close;
ods noresults;
proc sort data=data1;
by SDMVSTRA SDMVPSU;

* By Gender and Age.;
proc surveymeans nobs mean stderr data = data1;
stratum SDMVSTRA;
cluster SDMVPSU;
weight WTDRD1PP;
domain all all*ag2 al1*sex sex*ag1 sex*ag2;
var DR1T_:;
ods output domain = data2_sex;
* By Race/Ethnicity and Age.;
proc surveymeans nobs mean stderr data = data1;
stratum SDMVSTRA;
cluster SDMVPSU;
weight WTDRD1PP;
domain rac rac*ag1 rac*ag2;
var DR1T_: ;
ods output domain = data2_rac;
* By Family Income (in Dollars) and Age.; NOTE:Income in dollars not included in NHANES 2017-March
2020 data release.
proc surveymeans nobs mean stderr data = data1;
stratum SDMVSTRA;
Eluster SDMVPSU;
weight WTDRD1;
domain all inc all\%ag1 al7*ag2 inc*ag1 inc*ag2;
var DR1T_:;
ods output domain = dataz_inc;
* By Family Income (\% Poverty) and Age.;
proc surveymeans nobs mean stderr data = datal;
stratum SDMVSTRA;
cluster SDMVPSU;
weight WTDRD1PP;
domain all pov al1*ag1 al1*ag2 pov*ag1 pov*ag2;
var DR1T_: ;
ods output domain = data2_pov;
run;
ods listing;
$* ; ~$
$* \quad$ Combine data sets, assign statistical flag, round, and add
$* \quad$;
$* \quad$ table, age, and group variables.

```
*
************************************************************************;
data data3;
    set data2_sex (in=insex)
        data2_rac (in=inrac)
        dataz_inc (in=ininc)
        data2_pov (in=inpov);
    * Assign statistical flag based on cv, sample size, and vif.;
    vif = 2.76; * Variance inflation factor for 2 year and older.;
    if (mean > 0) then cv = stderr / mean * 100;
    if (cv >= 30) or
        (n < (30 * vif)) then statflag = '*';
    * Round values. ;
    cstat = put(mean, 8.2);
    cse = put(stderr, 8.3);
    * Indicate if value greated than zero too small to print. ;
    if (round(mean, 0.01) eq 0) and (mean > 0) then cstat = "#";
    if (round(stderr, 0.001) eq 0) and (stderr > 0) then cse = "#";
    * Don't show statflag if too small to print. ;
    if cstat = "#" then statflag = "";
    cse = compress("("||cse||")");
    * Don't show cse if cstat too small to print. ;
    if cstat = "#" then cse = "";
    * Replace zero with #. ;
    if compress(cstat) = "0" then do;
        cstat = "#";
        cse = "";
        statflag = "";
    end;
    * Make table, age, and group variables. ;
    if insex=1 then do;
        table = "sex";
        if sex in(.) then sex = 3; * Male and females ;
        if ag1 in(1:9) then age = ag1;
        if ag2 in(10:11) then age = ag2;
        if ag1=. and ag2=. then age = 12; * 2 and over ;
        group = put(sex, sexf.);
    end;
    if inrac=1 then do;
        table = "rac";
        if rac in(5) then rac = .; * Exclude other and miss ;
        if ag1 in(1:3) then age = ag1;
        if ag2 in(11) then age = ag2;
        if ag1=. and ag2=. then age = 12; * 2 and over ;
        group = put(rac, racf.);
    end;
    if ininc=1 then do; NOTE: Income in dollars not included in NHANES 2017-March 2020 data release.
        table = "inc";
        if inc in(4) then inc=.; * Exclude other and miss ;
```

```
        if all in(1) then ine = 4; * All individuals ;
        if ag1 in(1:3) then age = ag1;
        if agt in(11) then age = ag2;
        if ag1=. and ag2=. then age = 12; *2 and over ;
        group = put(inc, incf.);
    end;
    if inpov=1 then do;
        table = "pov";
        if pov in(4 5) then pov = .; * Exclude other and miss ;
        if all in(1) then pov = 4; * All individuals ;
    if ag1 in(1:3) then age = ag1;
    if ag2 in(11) then age = ag2;
    if ag1=. and ag2=. then age = 12; * 2 and over ;
    group = put(pov, povf.);
    end;
    agegroup = put(age, agef.);
    if group ^="" and age in(1:12) then output;
    keep varname varlabel cstat cse statflag n mean stderr cv;
    keep sex rac inc pov table age group agegroup;
run;
```


* ;
* Create data set, vars, with varnames and varorder. ;
* Permits printing vars in the correct order. ;
* ;
**;
proc transpose data=datal(keep=DR1T_: obs=0)
out=vars (keep=_name_ rename=(_name_=varname));
data vars;
set vars;
varorder=_n_;
proc sort data=data3;
by varname;
proc sort data=vars;
by varname;
data data3;
merge data3 vars;
by varname;
proc sort data=data3;
by table sex rac inc pov age varorder;
run;
* Create variable, wide, indicating wide line to appear as space. ;
data data3;
set data3;
if sex in(1 2) and age in(4 7 10) then wide $=1$;
else if sex in(.) and age in(11) then wide $=1$;
else wide $=0$;
run;
**;
*

```
* Create and run macro program to make tables. ;
* ;
************************************************************************;
%macro makeTables();
ods escapechar = '~';
ods listing close;
%do i = 1 %to 4; * Loop through tables.;
%if &i. = 1 %then %do;
    %let grp = sex;
    %let grpTxt = Gender*and age (years);
    %let grpBy = by Gender and Age;
%end;
%if &i. = 2 %then %do;
    %let grp = rac;
    %1et grpTxt = Race/ethnicity*and age (years);
    %let grpBy = by Race/Ethnicity and Age;
%end;
%if &i. = 3 %then %do; NOTE: Income in dollars not included in NHANES 2017-March 2020 data release.
    %let grp = inc;
    %let grpTxt = Family income*in dollars*and age (years);
    %let grpBy = by Family Income in Dollars and Age;
%end;
%if &i. = 4 %then %do;
    %let grp = pov;
    %1et grpTxt = Family income as*% of poverty leve1;
    %1et grpTxt = &grpTxt.*and age (years);
    %1et grpBy = by Family Income as % of Poverty Leve1 and Age;
```


\%end;

\%if \&i. ne 3 \%then \%do;
ods pdf file = "\&iPath.\Table\&i..pdf" style = journal notoc;

* Macro var with style, column, defines, and computes for all reports.;
$\%$ let allReports $=\% \operatorname{str}($
style(header)=[font=('Times') height=0.80in fontsize=10pt fontstyle=roman]
style(column)=[font=('Times') height=0.18in fontsize=10pt fontstyle=roman];
column \&grp. ("\&grpTxt." age) ("n" n) wide varlabel, (cstat statflag cse);
define \&grp. /group "" noprint id order=data;
define age /group "" style=[width=1.30in just=r] id order=data;
define $n \quad / g r o u p ~ " " ~ s t y l e=[w i d t h=0.400 .50 i n ~ j u s t=r] ; ~$
define wide /group "" noprint;
define varlabel /across "" order=data;
define cstat /group "" style=[width=0.35in just=r rightmargin=-0.10in leftmargin=-
$0.10 i n]$;
define statflag /group "" style=[width=0.02in just=r rightmargin= 0.05in leftmargin=-
0.10in];
define cse /group "" style=[width=0.360.35in just=1 rightmargin=-0.05in leftmargin=-
$0.10 i n$ fontsize=9pt];
compute wide;
if wide=1 then
call define(_row_, "style", "style=[height=0.22in vjust=t topmargin=-0.100in
bottommargin=-0.100in]");
else
call define(_row_, "style", "style=[height=0.12in vjust=t topmargin=-0.100in
bottommargin=-0.100in]");
endcomp;
compute before \&grp.;
line "~S=\{just=1 vjust=b fontweight=bold font=('Times') "
"height=0.25in fontsize=11pt\}" \&grp. \&grp.f.;
endcomp;
compute after \&grp.;
line "~S=\{height=0.10in\}";
endcomp;
format age agef. \&grp. \&grp.f.;);
\%1et footnote1 = "() Standard Error";
$\%$ let footnote $2=" *$ Indicates an estimate with a relative standard error greater than 30%.";
\%1et footnote3 $=$ "\# Indicates a non-zero value that is too small to report.";
\%1et footnote4a = "Total Dairy includes fluid milk, cheese, yogurt, and miscellaneous dairy (not
in table). '
"Fluid milk includes calcium fortified soy milk.";
$\%$ let footnote $4 \mathrm{~b}=$ "Legumes are not included in Total Protein Foods or Total Vegetables. "
"Legumes as Protein Foods are calculated as $4 x$ Legumes as Vegetable.";
$\% 1 e t$ footnote4c = "Total vegetables does not include Legumes.";
\%1et footnote6 = "DATA SOURCES: ~mWhat We Eat in America, NHANES 2017-March 2020
Prepandemic, " "individuals 2 years and over (excluding breast-fed
children), " "day 1 dietary intake data, weighted. $\sim-2 n$ "
"Food Patterns Equivalent Database (FPED) for use with what we Eat in America, NHANES 2017-March 2020 Prepandemic.";

\%let titleEnd = \&titleEnd. Data, \&grpBy., in the United States, 2017-March 2020 Prepandemic;
title;
footnote;
footnote1 \&footnote1.;
footnote2 \&footnote2.;
footnote3 \&footnote3.;
footnote4 \&footnote4a.;
footnote6 \&footnote6.;
title1 "Dairy: ~mMean Cup Equivalents, \&titleEnd.";
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname
in("DR1T_D_TOTAL" "DR1T_D_MILK"
"DR1T_D_CHEESE" "DR1T_D_YOGURT");
run;
footnote4;
footnote6 \&footnote6.;
title1 "Fruit: ~mMean Cup Equivalents, \&titleEnd.";
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname

```
        in( "DR1T_F_TOTAL" "DR1T_F_CITMLB"
            "DR1T_F_OTHER" "DR1T_F_JUICE");
```

run;
title1 "Grains: ~mMean Ounce Equivalents \&titleEnd.";
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname
in("DR1T_G_TOTAL" "DR1T_G_WHOLE"
"DR1T_G_REFINED");
run;
title1 "Protein Foods: ~mMean Ounce Equivalents, \&titleEnd.";
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname
in("DR1T_PF_TOTAL" "DR1T_PF_MPS_TOTAL"
"DR1T_PF_MEAT" "DR1T_PF_POULT"
"DR1T_PF_CUREDMEAT" "DR1T_PF_SEAFD_LOW"
"DR1T_PF_SEAFD_HI" "DR1T_PF_ORGAN");
run;
title1 "Protein Foods: ~mMean Ounce Equivalents, \&titleEnd.";
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname
in("DR1T_PF_EGGS" "DR1T_PF_NUTSDS"
"DR1T_PF_SOY");
run;
title1 "Legumes: ~mMean Cup Equivalents (as vegetable) and Ounce "
"Equivalents (as protein), \&titleEnd.";
footnote4 \&footnote4b.;
footnote6 \&footnote6.;
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname
in("DR1T_PF_LEGUMES" "DR1T_V_LEGUMES");
run;
title1 "Vegetables: ~mMean Cup Equivalents \&titleEnd.";
footnote4 \&footnote4c.;
footnote6 \&footnote6.;
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname
in("DR1T_V_TOTAL" "DR1T_V_DRKGR"
"DR1T_V_REDOR_OTHER" "DR1T_V_STARCHY_TOTAL"
"DR1T_V_STARCHY_POTATO" "DR1T_V_STARCHY_OTHER"
"DR1T_V_REDOR_TOTAL" "DR1T_V_REDOR_TOMATO"
"DR1T_V_OTHER");
run;
footnote4 ;
footnote6 \&footnote6.;
title1 "Oils and Other Components: ~mMean Grams of Oils and Solid Fats; "
"Teaspoon Equivalents of Added Sugars; ~2nand Number of Alcoholic "
"Drinks, \&titleEnd.";
proc report nowindows missing split ="*" data=data3 \&allReports.;
where table = "\&grp." and varname
in("DR1T_OILS" "DR1T_SOLID_FATS"
"DR1T_ADD_SUGARS" "DR1T_A_DRINKS");
run;
ods _al1_ close;
\%end;
\%end; * End of table loop.;
ods listing;
\%mend makeTables;
\%makeTables();

Appendix 8: Fruit, One Cup Equivalent Weights, FPID/FPED 2017-2018

| Food Description | Weight of One Cup
 Equivalent (grams) |
| :--- | :---: |
| 100% Fruit juice | 250 |
| 100% Fruit juice blend | 250 |
| 100% Fruit juice concentrate | 70 |
| Apple, baked | 110 |
| Apple, dried | 45 |
| Apple, raw | 110 |
| Applesauce | 245 |
| Apricot, dried | 65 |
| Apricot, raw | 165 |
| Banana flakes, dehydrated | 50 |
| Banana, boiled | 150 |
| Banana, raw | 150 |
| Blackberries, frozen | 150 |
| Blackberries, raw | 145 |
| Blueberries, frozen | 150 |
| Blueberries, raw | 145 |
| Boysenberries, frozen | 150 |
| Boysenberries, raw | 145 |
| Calamondin, raw | 185 |
| Cantaloupe melon, frozen | 170 |
| Cantaloupe melon, raw | 170 |
| Carambola (starfruit), raw | 170 |
| Casaba melon, raw | 10 |

| Appendix 8: Fruit, One Cup Equivalent Weights, FPID/F (Continued) | $17-2018$ |
| :---: | :---: |
| Food Description | Weight of One Cup Equivalent (grams) |
| Cherries, sour, raw | 155 |
| Cherries, sweet, raw | 155 |
| Cranberries, raw | 145 |
| Currants, dried | 75 |
| Currants, raw | 110 |
| Dates | 75 |
| Dewberries, raw | 145 |
| Fig, dried | 75 |
| Fig, raw | 255 |
| Fruit juice drink ${ }^{1}$ | 250 |
| Fruit nectar ${ }^{2}$ | 250 |
| Fruit, all types, canned in heavy syrup, solids, and liquids ${ }^{3}$ | 255 |
| Fruit, all types, canned in light syrup, solids, and liquids ${ }^{3}$ | 250 |
| Fruit, all types, canned in syrup, drained | 200 |
| Fruit, all types, canned in fruit juice, solids, and liquids ${ }^{3}$ | 245 |
| Fruit, all types, canned in water, solids, and liquids ${ }^{3}$ | 245 |
| Fruit, all types, canned in water, drained | 190 |
| Fruit, dried, all types, cooked | 250 |
| Grapefruit, raw | 210 |
| Grapes, raw, not specified as to type | 150 |
| Guava, raw | 165 |
| Honeydew melon, frozen | 170 |
| Honeydew melon, raw | 170 |
| Huckleberries, raw | 145 |

Appendix 8: Fruit, One Cup Equivalent Weights, FPID/FPED 2017-2018

 (Continued)Food Description
Weight of One Cup Equivalent (grams)

| Juneberries, raw | 145 |
| :--- | :---: |
| Kiwifruit, raw | 175 |
| Kumquats, raw | 185 |
| Lemon, raw | 210 |
| Lime, raw | 210 |
| Litchis, dried | 45 |
| Litchis, raw | 190 |
| Loganberries, frozen | 150 |
| Loganberries, raw | 145 |
| Mango, raw | 165 |
| Mulberries, raw | 145 |
| Nectarine, raw | 145 |
| Orange, raw | 185 |
| Papaya, dried | 70 |
| Papaya, raw | 140 |
| Passion fruit, raw | 235 |
| Peach, dried | 80 |
| Peach, frozen | 150 |
| Peach, raw | 165 |
| Pear, dried | 165 |
| Pear, raw | 70 |
| Persimmon, raw | 165 |
| Pineapple, dried | 150 |
| Pineapple, raw | 105 |

| Appendix 8: Fruit, One Cup Equivalent Weights, FPID/FPED 2017-2018
 (Continued) | |
| :--- | :---: |
| Food Description | Weight of One Cup
 Equivalent (grams) |
| Plum, raw | 165 |
| Plum, dried | 60 |
| Pomegranate, raw | 155 |
| Prunes, dried | 85 |
| Raisins | 75 |
| Raspberries, frozen | 150 |
| Raspberries, raw | 145 |
| Rhubarb, raw | 120 |
| Strawberries, frozen | 150 |
| Strawberries, raw | 145 |
| Tamarind, raw | 120 |
| Tangelo, raw | 185 |
| Tangerine, raw | 185 |
| Watermelon, raw | 145 |
| Youngberries, raw | |

${ }^{1}$ Fruit juice drinks are assumed to contain 15% fruit juice, unless specified otherwise.
${ }^{2}$ Fruit nectars are assumed to contain 40% fruit juice.
${ }^{3}$ Fruits canned in syrup or in water are assumed to contain 65% fruit. Fruits canned in fruit juice are assumed to contain 65% fruit and 35% fruit juice.

| Food Description | Weight of One Cup Equivalent (grams) |
| :---: | :---: |
| 100\% Vegetable juice, all types | 245 |
| Alfalfa sprouts or sprouted seed, raw | 35 |
| Artichoke, cooked | 175 |
| Artichoke, raw | 150 |
| Arugula, raw | 40 |
| Asparagus, cooked | 180 |
| Asparagus, raw | 135 |
| Avocados, raw | 145 |
| Bamboo shoots, cooked | 150 |
| Bamboo shoots, raw | 150 |
| Basil | 40 |
| Bean sprouts, cooked | 125 |
| Bean sprouts, raw | 105 |
| Beans, string or snap, cooked from frozen or canned | 135 |
| Beans, string or snap, cooked from raw | 125 |
| Beans, string or snap, raw | 110 |
| Beet greens, cooked | 145 |
| Beet greens, raw | 75 |
| Beets, cooked | 170 |
| Beets, raw | 135 |
| Bitter melon leaves, cooked | 125 |
| Bitter melon, cooked | 125 |
| Breadfruit, cooked | 250 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018
 (Continued)
 Food Description | Weight of One Cup
 Equivalent (grams) |
| :--- | :---: |
| Breadfruit, raw | 220 |
| Broccoflower, cooked | 125 |
| Broccoflower, raw | 110 |
| Broccoli, cooked | 155 |
| Broccoli, raw | 80 |
| Brussels sprouts, cooked | 155 |
| Brussels sprouts, raw | 90 |
| Burdock root, cooked | 125 |
| Burdock root, raw | 120 |
| Cabbage, (green, red, or savoy), cooked | 150 |
| Cabbage, (green, red, or savoy), raw | 90 |
| Cabbage, Chinese, cooked | 170 |
| Cabbage, mustard, raw | 130 |
| Cabbage, pak-choi, raw | 140 |
| Cabbage, pe-tsai, raw | 150 |
| Calabaza (Spanish pumpkin), cooked | 165 |
| Capers, cooked | 135 |
| Carrot juice | 125 |
| Carrots, cooked | 35 |
| Carrots, dried | 135 |
| Carrots, raw or frozen | 1050 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018
 (Continued)
 Food Description | Weight of One Cup
 Equivalent (grams) |
| :--- | :---: |
| Cauliflower, cooked from canned | 180 |
| Cauliflower, cooked from raw or frozen | 125 |
| Cauliflower, frozen | 110 |
| Cauliflower, raw | 110 |
| Celeriac, cooked | 155 |
| Celeriac, raw | 150 |
| Celery juice | 245 |
| Celery, cooked | 150 |
| Celery, raw | 120 |
| Chard, cooked | 150 |
| Chard, raw | 70 |
| Chayote (Christophine), cooked | 160 |
| Chayote (Christophine), raw | 130 |
| Chicory greens, raw | 60 |
| Chives, dehydrated | 100 |
| Chives, raw | 100 |
| Chrysanthemum garland, cooked | 165 |
| Collards, cooked from frozen or canned | 130 |
| | 100 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018 (Continued) | |
| :---: | :---: |
| Food Description | Weight of One Cup Equivalent (grams) |
| Cress, cooked from raw or canned | 135 |
| Cress, raw | 100 |
| Cucumbers, cooked | 180 |
| Cucumbers, pickled | 155 |
| Cucumbers, raw | 120 |
| Dandelion greens, cooked | 110 |
| Dandelion greens, raw | 110 |
| Dasheen, cooked | 140 |
| Eggplant, cooked | 95 |
| Eggplant, pickled | 135 |
| Eggplant, raw | 80 |
| Endive, raw | 100 |
| Escarole, cooked | 130 |
| Escarole, raw | 100 |
| Fennel bulb, cooked | 85 |
| Fennel bulb, raw | 85 |
| Garlic, cooked | 135 |
| Garlic, raw | 135 |
| Ginger root, raw | 95 |
| Grape leaves, raw | 30 |
| Greens, cooked from frozen or canned | 160 |
| Greens, cooked from raw | 145 |
| Hominy, canned or cooked | 165 |
| Jicama, raw | 130 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018 (Continued) | |
| :---: | :---: |
| Food Description | Weight of One Cup Equivalent (grams) |
| Kale, cooked from frozen or canned | 165 |
| Kale, cooked, from raw | 130 |
| Kohlrabi, cooked | 165 |
| Kohlrabi, raw | 135 |
| Lambsquarter, cooked | 180 |
| Leeks, cooked | 170 |
| Leeks, raw | 90 |
| Lettuce, Boston, raw | 110 |
| Lettuce, butterhead, raw | 110 |
| Lettuce, cooked | 110 |
| Lettuce, cos or romaine, raw | 95 |
| Lettuce, green leaf, raw | 70 |
| Lima beans, immature, cooked from raw, frozen, or canned | 170 |
| Lima beans, immature, raw or frozen | 155 |
| Lotus root, cooked | 120 |
| Mung beans, sprouted, cooked | 125 |
| Mung beans, sprouted, raw | 105 |
| Mushrooms, cooked from raw, frozen, or canned | 155 |
| Mushrooms, dehydrated | 20 |
| Mushrooms, raw | 70 |
| Mustard greens, cooked from frozen or canned | 150 |
| Mustard greens, cooked from raw | 140 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018 (Continued) | |
| :---: | :---: |
| Food Description | Weight of One Cup Equivalent (grams) |
| Mustard greens, raw | 110 |
| Okra, cooked from frozen or canned | 170 |
| Okra, cooked from raw | 160 |
| Okra, frozen | 115 |
| Okra, raw | 115 |
| Olives | 135 |
| Onions, dehydrated | 30 |
| Onions, frozen | 160 |
| Onions, cooked from raw or frozen | 210 |
| Onions, pearl, cooked from raw, frozen, or canned | 185 |
| Onions, raw | 160 |
| Onions, young green (spring or scallion), cooked | 220 |
| Onions, young green (spring or scallion), raw | 100 |
| Palm hearts, cooked | 145 |
| Palm hearts, raw | 145 |
| Parsley, cooked | 120 |
| Parsley, raw | 120 |
| Parsnips, cooked | 155 |
| Peas, cow, field, or black eye (immature), cooked, from raw, frozen, or canned | 170 |
| Peas, green (immature), cooked, from raw, frozen, or canned | 160 |
| Peas, green, dehydrated | 35 |
| Peas, green, frozen | 145 |
| Peas, green, raw | 145 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018 (Continued) | |
| :---: | :---: |
| Food Description | Weight of One Cup
 Equivalent (grams) |
| Peppers, bell and non-bell (chili), canned | 135 |
| Peppers, bell and non-bell (chili), cooked from raw, frozen, or canned | 135 |
| Peppers, bell and non-bell (chili), frozen | 125 |
| Peppers, bell and non-bell (chili), raw | 120 |
| Pigeon peas, immature seeds, cooked | 150 |
| Pigeon peas, immature seeds, raw | 145 |
| Pimiento | 190 |
| Plantain chips | 57 |
| Plantain or green banana, cooked | 150 |
| Plantain or green banana, raw | 150 |
| Poke greens, cooked | 155 |
| Pokeberry shoots, cooked | 165 |
| Potato chips | 57 |
| Potatoes, dry, powder | 30 |
| Pumpkin leaves, cooked | 65 |
| Pumpkin, cooked from raw, frozen, or canned | 245 |
| Pumpkin, raw | 115 |
| Radicchio, raw | 80 |
| Radish, cooked | 145 |
| Radish, raw | 125 |
| Rutabaga, cooked | 170 |
| Rutabaga, raw | 140 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018 (Continued) | |
| :---: | :---: |
| Food Description | Weight of One Cup Equivalent (grams) |
| Salsify, cooked | 135 |
| Sauerkraut | 140 |
| Seaweed, raw | 80 |
| Snow peas, cooked from raw or frozen | 160 |
| Snow peas, raw | 100 |
| Spinach, cooked from frozen or canned | 170 |
| Spinach, cooked, from raw | 150 |
| Spinach, frozen | 155 |
| Spinach, raw | 70 |
| Sprouts, not further specified | 55 |
| Squash, spaghetti, cooked | 155 |
| Squash, summer, cooked from raw, frozen, or canned | 180 |
| Squash, summer, raw | 115 |
| Squash, winter type, baked or cooked | 205 |
| Squash, winter type, mashed | 245 |
| Squash, winter type, raw | 115 |
| Sweet potato chips | 57 |
| Sweet potato leaves, cooked | 65 |
| Sweet potatoes, canned | 200 |
| Sweet potatoes, cooked, baked or boiled | 200 |
| Sweet potatoes, raw | 130 |

| Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018
 (Continued) | |
| :--- | :---: |
| Food Description | Weight of One Cup
 Equivalent (grams) |
| Tannier, cooked | 190 |
| Taro chips | 57 |
| Taro leaves, cooked | 145 |
| Taro leaves, raw | 60 |
| Taro, cooked | 130 |
| Taro, raw | 105 |
| Thistle leaves, cooked | 145 |
| Tomatillos, raw | 130 |
| Tomato juice | 245 |
| Tomato paste | 120 |
| Tomato puree | 120 |
| Tomato sauce | 245 |
| Tomatoes, canned in tomato juice | 245 |
| Tomatoes, cooked | 240 |
| Tomatoes, dried | 145 |
| Turnatoes, raw | 150 |
| Turnips, cooked from raw, frozen, or canned | 135 |
| Turnips, raw | 245 |

Appendix 9: Vegetables, One Cup Equivalent Weights, FPID/FPED 2017-2018 (Continued)

Food Description Weight of One Cup Equivalent (grams)

| Water chestnuts, cooked | 160 |
| :--- | :---: |
| Water chestnuts, raw | 125 |
| Watercress, cooked | 135 |
| Watercress, raw | 70 |
| White potatoes, boiled | 155 |
| White potatoes, raw | 150 |
| White potatoes, roasted or baked | 120 |
| Winter melon (wax gourd), cooked | 175 |

Appendix 10: Beans, Peas, and Lentils (Legumes), One Cup Equivalent Weights, FPID/FPED 2017-2018

| Food Description | Weight of One Cup
 Equivalent (grams) |
| :--- | :---: |
| Beans or peas, not specified, cooked | 175 |
| Beans or peas, not specified, uncooked | 60 |
| Black beans, cooked | 175 |
| Black beans, uncooked | 60 |
| Brown beans, cooked | 175 |
| Brown beans, uncooked | 60 |
| Calico beans, cooked | 175 |
| Calico beans, uncooked | 60 |
| Carob flour or powder | 60 |
| Chickpeas (garbanzo beans, Bengal gram), canned, drained | 175 |
| Chickpeas (garbanzo beans, Bengal gram), cooked | 175 |
| Chickpeas (garbanzo beans, Bengal gram), uncooked | 60 |
| Cowpeas, (blackeyed, crowder, and southern peas), cooked | 175 |
| Cowpeas, (blackeyed, crowder, and southern peas), uncooked | 60 |
| Fava beans (broad beans), cooked | 175 |
| Fava beans (broad beans), uncooked | 60 |
| Kidney beans, canned, drained | 175 |
| Kidney beans, cooked | 60 |
| Kidney beans, uncooked | 175 |
| Lentils, cooked | 60 |
| Lentils, uncooked | 6 |
| Lima beans (mature), cooked | 6 |

Appendix 10: Beans, peas, and lentils (Legumes), One Cup Equivalent Weights, FPID/FPED 2017-2018 (Continued)

| Food Description | Weight of One Cup
 Equivalent (grams) |
| :--- | :---: |
| Lima beans (mature), uncooked | 60 |
| Mung beans, cooked | 175 |
| Mung beans, uncooked | 60 |
| Navy beans, canned, drained | 175 |
| Navy beans, cooked | 175 |
| Navy beans, uncooked | 60 |
| Pink beans, cooked | 175 |
| Pink beans, uncooked | 60 |
| Pinto beans, cooked | 175 |
| Pinto beans, uncooked | 60 |
| Split peas, cooked | 175 |
| Split peas, uncooked | 60 |
| White beans, cooked | 175 |
| White beans, uncooked | 60 |

Appendix 11: Dairy, One Cup Equivalent Weights, FPID/FPED 2017-2018
Food Description

Weight of One Cup Equivalent

Milk

| Buttermilk, fluid, all fat types | 245 g |
| :--- | :---: |
| Milk, dry, all fat types, not reconstituted | 25 g |
| Milk, dry, all fat types, reconstituted | 245 g |
| Milk, evaporated, all fat types | 125 g |
| Milk, fluid, all fat types, plain or flavored | 245 g |
| Soy milk, with added calcium | 245 g |

| Yogurt | |
| :--- | :--- |
| Yogurt, all fat types, plain or flavored | 245 g |

Weight of One Cup Equivalent (ounces)

| Cheeses | Equivalent (ounces) |
| :--- | :---: |
| Cheese food, pasteurized process, American | 2 oz. |
| Cheese food, pasteurized process, Swiss | 1.5 oz. |
| Cheese product, pasteurized process, American, reduced fat | 2 oz. |
| Cheese product, pasteurized process, cheddar, reduced fat | 2 oz. |
| Cheese spread, pasteurized process, American | 2 oz. |
| Cheese, blue | 2 oz. |
| Cheese, brick | 1.5 oz. |
| Cheese, brie | 6 oz. |
| Cheese, camembert | 3 oz. |
| Cheese, cheddar | 1.5 oz. |

Appendix 11: Dairy, One Cup Equivalent Weights, FPID/FPED 2017-2018

 (Continued)Food Description
Weight of One Cup
Equivalent (ounces)

| Cheese, cheddar, nonfat | 1 oz. |
| :--- | :---: |
| Cheese, Colby | 1.5 oz. |
| Cheese, cottage | Variable |
| Cheese, cream, fat free | 3 oz. |
| Cheese, Edam | 1.5 oz. |
| Cheese, Feta | 2 oz. |
| Cheese, Fontina | 2 oz. |
| Cheese, goat, hard type | 1 oz. |
| Cheese, goat, semisoft type | 3.5 oz. |
| Cheese, goat, soft type | 7.5 oz. |
| Cheese, Gouda | 1.5 oz. |
| Cheese, Gruyere | 1 oz. |
| Cheese, Limburger | 2 oz. |
| Cheese, low fat, Cheddar or Colby | 3 oz. |
| Cheese, low-sodium, Cheddar or Colby | 1.5 oz. |
| Cheese, Mexican, blend, reduced fat | 1 oz. |
| Cheese, Mexican, queso anejo | 1.5 oz. |
| Cheese, Mexican, queso asadero | 1.5 oz. |
| Cheese, Mexican, queso chihuahua | 1.5 oz. |
| Cheese, Monterey | 1.5 oz. |
| Cheese, Monterey, low fat | 1.5 oz. |
| Cheese, mozzarella, low sodium | 1 oz. |
| Cheese, mozzarella, nonfat | |

| Appendix 11 Dairy, One Cup Equivalent Weights, FPID/FPED 2017-2018
 (Continued) | |
| :--- | :---: |
| Food Description | Weight of One Cup
 Equivalent (ounces) |
| Cheese, mozzarella, part skim milk | 1.5 oz. |
| Cheese, mozzarella, part skim milk, low moisture | 1.5 oz. |
| Cheese, mozzarella, whole milk | 2 oz. |
| Cheese, mozzarella, whole milk, low moisture | 2 oz. |
| Cheese, Muenster | 1.5 oz. |
| Cheese, Muenster, low fat | 2 oz. |
| Cheese, parmesan, dry grated | 1 oz. |
| Cheese, parmesan, dry grated, reduced fat | 1 oz. |
| Cheese, parmesan, hard | 1 oz. |
| Cheese, parmesan, low sodium | 1.5 oz. |
| Cheese, pasteurized process, American, low fat | 1.5 oz. |
| Cheese, pasteurized process, American | 2 oz. |
| Cheese, pasteurized process, Cheddar or American, fat-free | 1.5 oz. |
| Cheese, pasteurized process, Swiss | 1.5 oz. |
| Cheese, pasteurized process, Swiss, low fat | 1.5 oz. |
| Cheese, Port de Salut | 1.5 oz. |
| Cheese, Provolone | 1.5 oz. |
| Cheese, provolone, reduced fat | 3.5 oz. |
| Cheese, queso fresco | 4.5 oz. |
| Cheese, Ricotta, part skim milk | 5 oz. |
| | 1.5 oz. |

[^0]: * New variable in FPED and is not in MPED 2

[^1]: * New variable in FPED and is not in MPED 2

[^2]: * Amounts rounded and the total may not add to 100

